Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies University of Freiburg, 79104 Freiburg, Germany.
Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark.
Biomolecules. 2020 Nov 13;10(11):1550. doi: 10.3390/biom10111550.
Root development is regulated by the tripeptide glutathione (GSH), a strong non-enzymatic antioxidant found in plants but with a poorly understood function in roots. Here, Arabidopsis mutants deficient in GSH biosynthesis (, , and ) and plants treated with the GSH biosynthesis inhibitor buthionine sulfoximine (BSO) showed root growth inhibition, significant alterations in the root apical meristem (RAM) structure (length and cell division), and defects in lateral root formation. Investigation of the molecular mechanisms of GSH action showed that GSH deficiency modulated total ubiquitination of proteins and inhibited the auxin-related, ubiquitination-dependent degradation of Aux/IAA proteins and the transcriptional activation of early auxin-responsive genes. However, the DR5 auxin transcriptional response differed in root apical meristem (RAM) and pericycle cells. The RAM DR5 signal was increased due to the up-regulation of the auxin biosynthesis TAA1 protein and down-regulation of PIN4 and PIN2, which can act as auxin sinks in the root tip. The transcription auxin response (the DR5 signal and expression of auxin responsive genes) in isolated roots, induced by a low (0.1 µM) auxin concentration, was blocked following GSH depletion of the roots by BSO treatment. A higher auxin concentration (0.5 µM) offset this GSH deficiency effect on DR5 expression, indicating that GSH deficiency does not completely block the transcriptional auxin response, but decreases its sensitivity. The ROS regulation of GSH, the active GSH role in cell proliferation, and GSH cross-talk with auxin assume a potential role for GSH in the modulation of root architecture under stress conditions.
根的发育受三肽谷胱甘肽(GSH)的调控,GSH 是一种存在于植物中的强非酶抗氧化剂,但在根中其功能尚未被充分了解。在这里,谷胱甘肽生物合成缺陷的拟南芥突变体(gsh1、gsh2 和 gsh3)和用谷胱甘肽生物合成抑制剂丁硫氨酸亚砜(BSO)处理的植物表现出根生长抑制、根顶端分生组织(RAM)结构(长度和细胞分裂)的显著改变以及侧根形成缺陷。对 GSH 作用的分子机制的研究表明,GSH 缺乏调节蛋白质的总泛素化,并抑制与生长素相关的、依赖泛素化的 Aux/IAA 蛋白降解和早期生长素响应基因的转录激活。然而,GSH 缺乏对根顶端分生组织(RAM)和周缘细胞中的 DR5 生长素转录反应有不同的影响。由于生长素生物合成 TAA1 蛋白的上调和 PIN4 和 PIN2 的下调,RAM 的 DR5 信号增加,PIN4 和 PIN2 可以在根尖充当生长素汇。用 BSO 处理耗尽根中的 GSH 后,由低浓度(0.1µM)生长素诱导的离体根中的转录生长素反应(DR5 信号和生长素响应基因的表达)被阻断。更高浓度的生长素(0.5µM)抵消了 GSH 缺乏对 DR5 表达的影响,这表明 GSH 缺乏并不能完全阻断转录生长素反应,而是降低了其敏感性。ROS 对 GSH 的调节、GSH 在细胞增殖中的活性作用以及 GSH 与生长素的交叉对话,表明 GSH 在胁迫条件下调节根结构中可能具有重要作用。