Suppr超能文献

DeepFrag-k:一种用于蛋白质折叠识别的基于片段的深度学习方法。

DeepFrag-k: a fragment-based deep learning approach for protein fold recognition.

作者信息

Elhefnawy Wessam, Li Min, Wang Jianxin, Li Yaohang

机构信息

Department of Computer Science, Old Dominion University, Norfolk, U.S.A.

Department of Computer Science, Central South University, Changsha, China.

出版信息

BMC Bioinformatics. 2020 Nov 18;21(Suppl 6):203. doi: 10.1186/s12859-020-3504-z.

Abstract

BACKGROUND

One of the most essential problems in structural bioinformatics is protein fold recognition. In this paper, we design a novel deep learning architecture, so-called DeepFrag-k, which identifies fold discriminative features at fragment level to improve the accuracy of protein fold recognition. DeepFrag-k is composed of two stages: the first stage employs a multi-modal Deep Belief Network (DBN) to predict the potential structural fragments given a sequence, represented as a fragment vector, and then the second stage uses a deep convolutional neural network (CNN) to classify the fragment vector into the corresponding fold.

RESULTS

Our results show that DeepFrag-k yields 92.98% accuracy in predicting the top-100 most popular fragments, which can be used to generate discriminative fragment feature vectors to improve protein fold recognition.

CONCLUSIONS

There is a set of fragments that can serve as structural "keywords" distinguishing between major protein folds. The deep learning architecture in DeepFrag-k is able to accurately identify these fragments as structure features to improve protein fold recognition.

摘要

背景

蛋白质折叠识别是结构生物信息学中最关键的问题之一。在本文中,我们设计了一种新颖的深度学习架构,即DeepFrag-k,它在片段水平上识别折叠判别特征,以提高蛋白质折叠识别的准确性。DeepFrag-k由两个阶段组成:第一阶段采用多模态深度信念网络(DBN),根据序列预测潜在的结构片段,将其表示为片段向量,然后第二阶段使用深度卷积神经网络(CNN)将片段向量分类到相应的折叠中。

结果

我们的结果表明,DeepFrag-k在预测最流行的前100个片段时准确率达到92.98%,这些片段可用于生成判别性片段特征向量,以改善蛋白质折叠识别。

结论

存在一组片段可作为区分主要蛋白质折叠的结构“关键词”。DeepFrag-k中的深度学习架构能够准确地将这些片段识别为结构特征,以改善蛋白质折叠识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab1/7672895/0c3d584c00f8/12859_2020_3504_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验