Vaidya Tushar, Murguia Carlos, Piliouras Georgios
Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Eindhoven University of Technology, Department of Mechanical Engineering, 5612 AZ Eindhoven, Netherlands.
R Soc Open Sci. 2020 Oct 21;7(10):201188. doi: 10.1098/rsos.201188. eCollection 2020 Oct.
Black-Scholes (BS) is a remarkable quotation model for European option pricing in financial markets. Option prices are calculated using an analytical formula whose main inputs are strike (at which price to exercise) and volatility. The BS framework assumes that volatility remains constant across all strikes; however, in practice, it varies. How do traders come to learn these parameters? We introduce natural agent-based models, in which traders update their beliefs about the true implied volatility based on the opinions of other agents. We prove exponentially fast convergence of these opinion dynamics, using techniques from control theory and leader-follower models, thus providing a resolution between theory and market practices. We allow for two different models, one with feedback and one with an unknown leader.
布莱克-斯科尔斯(BS)是金融市场中用于欧洲期权定价的卓越报价模型。期权价格通过一个解析公式计算得出,该公式的主要输入参数是行权价格(行使期权的价格)和波动率。BS框架假设所有行权价格的波动率保持恒定;然而,在实际中,波动率是变化的。交易员如何了解这些参数呢?我们引入基于自然主体的模型,在该模型中,交易员根据其他主体的观点更新他们对真实隐含波动率的信念。我们运用控制理论和领导者-跟随者模型的技术,证明了这些观点动态的指数快速收敛,从而在理论与市场实践之间提供了一种解决方案。我们考虑两种不同的模型,一种是具有反馈的模型,另一种是具有未知领导者的模型。