Jana Subrata, Śmiga Szymon, Constantin Lucian A, Samal Prasanjit
School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India.
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
J Chem Theory Comput. 2020 Dec 8;16(12):7413-7430. doi: 10.1021/acs.jctc.0c00823. Epub 2020 Nov 18.
Connections between the Görling-Levy (GL) perturbation theory and the parameters of double-hybrid (DH) density functional are established via adiabatic connection formalism. Moreover, we present a more general DH density functional theory, where the higher-order perturbation terms beyond the second-order GL2 one, such as GL3 and GL4, also contribute. It is shown that a class of DH functionals including previously proposed ones can be formed using the present construction. Based on the proposed formalism, we assess the performance of higher-order DH and long-range corrected DH formed on the Perdew-Burke-Ernzerhof (PBE) semilocal functional and second-order GL2 correlation energy. The underlying construction of DH functionals based on the generalized many-body perturbation approaches is physically appealing in terms of the development of the non-local forms using more accurate and sophisticated semilocal functionals.
通过绝热连接形式理论,建立了戈林 - 利维(GL)微扰理论与双杂化(DH)密度泛函参数之间的联系。此外,我们提出了一种更通用的DH密度泛函理论,其中除了二阶GL2项之外的高阶微扰项,如GL3和GL4,也有贡献。结果表明,使用当前的构建方法可以形成一类包括先前提出的DH泛函。基于所提出的形式理论,我们评估了在佩德韦 - 伯克 - 恩泽尔霍夫(PBE)半局部泛函和二阶GL2相关能基础上形成的高阶DH和长程校正DH的性能。基于广义多体微扰方法构建DH泛函,从使用更精确和复杂的半局部泛函发展非局部形式的角度来看,在物理上具有吸引力。