Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
J Neurophysiol. 2021 Jan 1;125(1):1-11. doi: 10.1152/jn.00453.2020. Epub 2020 Nov 18.
The Na-K-ATPase (Na-K pump) is essential for setting resting membrane potential and restoring transmembrane Na and K gradients after neuronal firing, yet its roles in developing neurons are not well understood. This study examined the contribution of the Na-K pump to resting membrane potential and membrane excitability of developing CA1 and CA3 neurons and its role in maintaining synchronous network bursting. Experiments were conducted in postnatal day (P)9 to P13 rat hippocampal slices using whole cell patch-clamp and extracellular field-potential recordings. Blockade of the Na-K pump with strophanthidin caused marked depolarization (23.1mV) in CA3 neurons but only a modest depolarization (3.3mV) in CA1 neurons. Regarding other membrane properties, strophanthidin differentially altered the voltage-current responses, input resistance, action-potential threshold and amplitude, rheobase, and input-output relationship in CA3 vs. CA1 neurons. At the network level, strophanthidin stopped synchronous epileptiform bursting in CA3 induced by 0 Mg and 4-aminopyridine. Furthermore, dual whole cell recordings revealed that strophanthidin disrupted the synchrony of CA3 neuronal firing. Finally, strophanthidin reduced spontaneous excitatory postsynaptic current (sEPSC) bursts (i.e., synchronous transmitter release) and transformed them into individual sEPSC events (i.e., nonsynchronous transmitter release). These data suggest that the Na-K pump plays a more profound role in membrane excitability in developing CA3 neurons than in CA1 neurons and that the pump is essential for the maintenance of synchronous network bursting in CA3. Compromised Na-K pump function leads to cessation of ongoing synchronous network activity, by desynchronizing neuronal firing and neurotransmitter release in the CA3 synaptic network. These findings have implications for the regulation of network excitability and seizure generation in the developing brain. Despite the extensive literature showing the importance of the Na-K pump in various neuronal functions, its roles in the developing brain are not well understood. This study reveals that the Na-K pump differentially regulates the excitability of CA3 and CA1 neurons in the developing hippocampus, and the pump activity is crucial for maintaining network activity. Compromised Na-K pump activity desynchronizes neuronal firing and transmitter release, leading to cessation of ongoing epileptiform network bursting.
钠钾-ATP 酶(钠钾泵)对于设定静息膜电位和恢复神经元放电后跨膜钠和钾梯度至关重要,但它在发育中的神经元中的作用尚未得到很好的理解。本研究检查了钠钾泵对 CA1 和 CA3 神经元静息膜电位和膜兴奋性的贡献及其在维持同步网络爆发中的作用。在出生后第 9 至 13 天的大鼠海马切片中进行了实验,使用全细胞膜片钳和细胞外场电位记录。哇巴因阻断钠钾泵导致 CA3 神经元明显去极化(23.1mV),而 CA1 神经元仅适度去极化(3.3mV)。关于其他膜特性,哇巴因改变了 CA3 与 CA1 神经元的电压电流反应、输入电阻、动作电位阈值和幅度、兴奋阈值和输入-输出关系。在网络水平上,哇巴因停止了由 0 Mg 和 4-氨基吡啶诱导的 CA3 中的同步癫痫样爆发。此外,双细胞膜片钳记录显示,哇巴因破坏了 CA3 神经元放电的同步性。最后,哇巴因减少了自发性兴奋性突触后电流(sEPSC)爆发(即同步递质释放),并将其转化为单个 sEPSC 事件(即非同步递质释放)。这些数据表明,钠钾泵在发育中的 CA3 神经元中的膜兴奋性中发挥比 CA1 神经元更深远的作用,泵对于 CA3 中的同步网络爆发的维持是必不可少的。泵功能受损会导致正在进行的同步网络活动停止,通过使 CA3 突触网络中的神经元放电和神经递质释放去同步。这些发现对于调节发育中的大脑中的网络兴奋性和癫痫发作具有重要意义。尽管有大量文献表明钠钾泵在各种神经元功能中的重要性,但它在发育中的大脑中的作用尚未得到很好的理解。本研究揭示了钠钾泵在发育中的海马体中差异调节 CA3 和 CA1 神经元的兴奋性,并且泵活性对于维持网络活动至关重要。钠钾泵活性受损会使神经元放电和递质释放去同步,导致正在进行的癫痫样网络爆发停止。