Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina.
Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD Buenos Aires, Argentina.
J Proteome Res. 2021 Jan 1;20(1):841-857. doi: 10.1021/acs.jproteome.0c00663. Epub 2020 Nov 18.
A discovery-based lipid profiling study of serum samples from a cohort that included patients with clear cell renal cell carcinoma (ccRCC) stages I, II, III, and IV ( = 112) and controls ( = 52) was performed using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and machine learning techniques. Multivariate models based on support vector machines and the LASSO variable selection method yielded two discriminant lipid panels for ccRCC detection and early diagnosis. A 16-lipid panel allowed discriminating ccRCC patients from controls with 95.7% accuracy in a training set under cross-validation and 77.1% accuracy in an independent test set. A second model trained to discriminate early (I and II) from late (III and IV) stage ccRCC yielded a panel of 26 compounds that classified stage I patients from an independent test set with 82.1% accuracy. Thirteen species, including cholic acid, undecylenic acid, lauric acid, LPC(16:0/0:0), and PC(18:2/18:2), identified with level 1 exhibited significantly lower levels in samples from ccRCC patients compared to controls. Moreover, 3α-hydroxy-5α-androstan-17-one 3-sulfate, -5-dodecenoic acid, arachidonic acid, -13-docosenoic acid, PI(16:0/18:1), PC(16:0/18:2), and PC(O-16:0/20:4) contributed to discriminate early from late ccRCC stage patients. The results are auspicious for early ccRCC diagnosis after validation of the panels in larger and different cohorts.
一项基于发现的脂质分析研究,对包括透明细胞肾细胞癌(ccRCC)I、II、III 和 IV 期患者(n=112)和对照组(n=52)的队列血清样本进行了分析,使用超高效液相色谱-四极杆飞行时间质谱联用和机器学习技术。基于支持向量机和 LASSO 变量选择方法的多元模型,产生了两个用于检测和早期诊断 ccRCC 的判别脂质面板。一个包含 16 种脂质的面板,在交叉验证的训练集中,能够以 95.7%的准确率区分 ccRCC 患者和对照组,在独立测试集中的准确率为 77.1%。另一个用于区分早期(I 和 II 期)和晚期(III 和 IV 期)ccRCC 的模型,产生了一个包含 26 种化合物的面板,在独立测试集中,该模型以 82.1%的准确率将 I 期患者分类。有 13 种化合物,包括胆酸、十一烯酸、月桂酸、LPC(16:0/0:0)和 PC(18:2/18:2),被鉴定为 1 级,在 ccRCC 患者的样本中水平显著低于对照组。此外,3α-羟基-5α-雄烷-17-酮 3-硫酸盐、-5-十二烯酸、花生四烯酸、-13-二十二碳烯酸、PI(16:0/18:1)、PC(16:0/18:2)和 PC(O-16:0/20:4)有助于区分早期和晚期 ccRCC 患者。这些结果为在更大和不同的队列中验证这些面板后,进行早期 ccRCC 诊断提供了希望。