Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center Shreveport LA.
Department of Molecular and Cellular Physiology Louisiana State University Health Sciences Center Shreveport LA.
J Am Heart Assoc. 2020 Dec;9(23):e017195. doi: 10.1161/JAHA.120.017195. Epub 2020 Nov 19.
Background The mutated α-B-Crystallin (CryAB) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryAB expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryAB mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryAB mice. In the present study, we report that the CryAB mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryAB hearts. Mitochondria isolated from CryAB transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryAB hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.
具有突变型α-B-晶体蛋白(CryAB)的肌联蛋白相关性肌病(DRM)模型表现出与年龄相关的病理性心脏重构和心力衰竭进展。心肌细胞中 CryAB 的表达影响肌原纤维内线粒体的空间组织,但在整个蛋白毒性疾病过程中,线粒体中的分子扰动仍不清楚。
CryAB 小鼠表现出电子致密物聚集体的积累和与心脏功能障碍发展相关的肌原纤维变性。尽管广泛的研究表明这些改变的超微结构变化导致心脏收缩功能障碍,但心肌细胞死亡的分子机制仍不清楚。在这里,我们探讨了导致心脏收缩功能障碍的早期线粒体病理过程,并确定了在 CryAB 小鼠中观察到的心力衰竭的致病基础。在本研究中,我们报告说,CryAB 转基因心脏经历了与动力相关蛋白 1 水平增加和光感受器萎缩 1 型以及线粒体融合蛋白 1 水平降低相关的改变的线粒体动力学,在疾病过程中。与这些变化相关的是,在 CryAB 心脏发生病理性不利重构之前,线粒体氧化磷酸化和丙酮酸脱氢酶复合物调节蛋白的组成发生了改变。从没有明显病理学的 CryAB 转基因心脏分离的线粒体显示电子传递链复合物活性和线粒体呼吸降低。总之,我们证明了线粒体参与了 DRM 相关细胞功能障碍的病理性重构和进展。
在可检测的病理学和心脏收缩功能障碍发展之前,CryAB 心脏就已经出现了以改变的线粒体动力学、氧化磷酸化和丙酮酸脱氢酶复合物蛋白水平、异常的电子传递链复合物活性和线粒体呼吸为特征的线粒体功能障碍。