Wu Yen-Ju, Tanaka Takehiro, Komori Tomoyuki, Fujii Mikiya, Mizuno Hiroshi, Itoh Satoshi, Takada Tadanobu, Fujita Erina, Xu Yibin
Center for Materials Research by Information Integration (CMI2), Research and Services Division of Materials Data and Integrated System (Madis), National Institute for Materials Science (NIMS), Tsukuba, Japan.
International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Japan.
Sci Technol Adv Mater. 2020 Oct 19;21(1):712-725. doi: 10.1080/14686996.2020.1824985.
We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.
我们提出了一种计算方法,用于识别锂固体电解质离子电导率的重要描述符。我们的方法区分了体电导率和晶界电导率的影响因素,这方面的报道很少。通过机器学习研究了相互关联的结构(如晶粒尺寸、相)、材料(如锂比率)、化学(如电负性、极化率)和实验(如烧结温度、合成方法)性质对体电导率和晶界电导率的影响。使用锂固体导体在室温下的体电导率和晶界电导率对数据进行训练。通过非线性XGBoost算法确定的特征重要性和预测性能来阐明重要描述符:(i)烧结条件的实验描述符对体电导率和晶界电导率都很重要,(ii)锂位点占有率和锂比率的材料描述符是体电导率的主要描述符,(iii)密度和晶胞体积是主要的结构描述符,而极化率和电负性是晶界电导率的主要化学描述符,(iv)晶粒尺寸提供了诸如热力学条件等物理见解,在确定固体多晶离子导体中的晶界电导率时应予以考虑。