Suppr超能文献

相机设置和生物群落会影响公民科学方法对相机陷阱图像分类的准确性。

Camera settings and biome influence the accuracy of citizen science approaches to camera trap image classification.

作者信息

Egna Nicole, O'Connor David, Stacy-Dawes Jenna, Tobler Mathias W, Pilfold Nicholas, Neilson Kristin, Simmons Brooke, Davis Elizabeth Oneita, Bowler Mark, Fennessy Julian, Glikman Jenny Anne, Larpei Lexson, Lekalgitele Jesus, Lekupanai Ruth, Lekushan Johnson, Lemingani Lekuran, Lemirgishan Joseph, Lenaipa Daniel, Lenyakopiro Jonathan, Lesipiti Ranis Lenalakiti, Lororua Masenge, Muneza Arthur, Rabhayo Sebastian, Ole Ranah Symon Masiaine, Ruppert Kirstie, Owen Megan

机构信息

Duke University Nicholas School for the Environment Durham NC USA.

San Diego Zoo Institute for Conservation Research Escondido CA USA.

出版信息

Ecol Evol. 2020 Oct 6;10(21):11954-11965. doi: 10.1002/ece3.6722. eCollection 2020 Nov.

Abstract

Scientists are increasingly using volunteer efforts of citizen scientists to classify images captured by motion-activated trail cameras. The rising popularity of citizen science reflects its potential to engage the public in conservation science and accelerate processing of the large volume of images generated by trail cameras. While image classification accuracy by citizen scientists can vary across species, the influence of other factors on accuracy is poorly understood. Inaccuracy diminishes the value of citizen science derived data and prompts the need for specific best-practice protocols to decrease error. We compare the accuracy between three programs that use crowdsourced citizen scientists to process images online: Snapshot Serengeti, Wildwatch Kenya, and AmazonCam Tambopata. We hypothesized that habitat type and camera settings would influence accuracy. To evaluate these factors, each photograph was circulated to multiple volunteers. All volunteer classifications were aggregated to a single best answer for each photograph using a plurality algorithm. Subsequently, a subset of these images underwent expert review and were compared to the citizen scientist results. Classification errors were categorized by the nature of the error (e.g., false species or false empty), and reason for the false classification (e.g., misidentification). Our results show that Snapshot Serengeti had the highest accuracy (97.9%), followed by AmazonCam Tambopata (93.5%), then Wildwatch Kenya (83.4%). Error type was influenced by habitat, with false empty images more prevalent in open-grassy habitat (27%) compared to woodlands (10%). For medium to large animal surveys across all habitat types, our results suggest that to significantly improve accuracy in crowdsourced projects, researchers should use a trail camera set up protocol with a burst of three consecutive photographs, a short field of view, and determine camera sensitivity settings based on in situ testing. Accuracy level comparisons such as this study can improve reliability of future citizen science projects, and subsequently encourage the increased use of such data.

摘要

科学家们越来越多地利用公民科学家的志愿力量来对由运动激活的追踪相机拍摄的图像进行分类。公民科学日益普及,这反映出它有潜力让公众参与保护科学,并加速处理追踪相机产生的大量图像。虽然公民科学家的图像分类准确率可能因物种而异,但其他因素对准确率的影响却知之甚少。不准确会降低公民科学衍生数据的价值,并促使需要特定的最佳实践方案来减少错误。我们比较了三个利用众包公民科学家在线处理图像的项目的准确率:塞伦盖蒂快照项目、肯尼亚野生观察项目和坦波帕塔亚马逊相机项目。我们假设栖息地类型和相机设置会影响准确率。为了评估这些因素,每张照片都分发给了多名志愿者。使用多数算法将所有志愿者的分类汇总为每张照片的单个最佳答案。随后,对这些图像的一个子集进行了专家评审,并与公民科学家的结果进行了比较。分类错误按错误的性质(例如,错误物种或错误空值)和错误分类的原因(例如,误认)进行分类。我们的结果表明,塞伦盖蒂快照项目的准确率最高(97.9%),其次是坦波帕塔亚马逊相机项目(93.5%),然后是肯尼亚野生观察项目(83.4%)。错误类型受栖息地影响,与林地(10%)相比,空旷草地栖息地中错误空值图像更为普遍(27%)。对于所有栖息地类型的中大型动物调查,我们的结果表明,为了显著提高众包项目的准确率,研究人员应使用一种追踪相机设置方案,即连续拍摄三张照片、短视野,并根据现场测试确定相机灵敏度设置。像本研究这样的准确率水平比较可以提高未来公民科学项目的可靠性,并随后鼓励更多地使用此类数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14d/7663993/869aed29a75e/ECE3-10-11954-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验