Suppr超能文献

用于材料发现的可解释机器学习:预测潜在可形成的钕铁硼晶体结构并提取结构-稳定性关系。

Explainable machine learning for materials discovery: predicting the potentially formable Nd-Fe-B crystal structures and extracting the structure-stability relationship.

作者信息

Pham Tien-Lam, Nguyen Duong-Nguyen, Ha Minh-Quyet, Kino Hiori, Miyake Takashi, Dam Hieu-Chi

机构信息

Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

ESICMM, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

出版信息

IUCrJ. 2020 Sep 23;7(Pt 6):1036-1047. doi: 10.1107/S2052252520010088. eCollection 2020 Nov 1.

Abstract

New Nd-Fe-B crystal structures can be formed via the elemental substitution of -- host structures, including lanthanides (), transition metals () and light elements, = B, C, N and O. The 5967 samples of ternary -- materials that are collected are then used as the host structures. For each host crystal structure, a substituted crystal structure is created by substituting all lanthanide sites with Nd, all transition metal sites with Fe and all light-element sites with B. High-throughput first-principles calculations are applied to evaluate the phase stability of the newly created crystal structures, and 20 of them are found to be potentially formable. A data-driven approach based on supervised and unsupervised learning techniques is applied to estimate the stability and analyze the structure-stability relationship of the newly created Nd-Fe-B crystal structures. For predicting the stability for the newly created Nd-Fe-B structures, three supervised learning models: kernel ridge regression, logistic classification and decision tree model, are learned from the -- host crystal structures; the models achieved maximum accuracy and recall scores of 70.4 and 68.7%, respectively. On the other hand, our proposed unsupervised learning model based on the integration of descriptor-relevance analysis and a Gaussian mixture model achieved an accuracy and recall score of 72.9 and 82.1%, respectively, which are significantly better than those of the supervised models. While capturing and interpreting the structure-stability relationship of the Nd-Fe-B crystal structures, the unsupervised learning model indicates that the average atomic coordination number and coordination number of the Fe sites are the most important factors in determining the phase stability of the new substituted Nd-Fe-B crystal structures.

摘要

通过对包括镧系元素()、过渡金属()和轻元素(= B、C、N和O)的主体结构进行元素替代,可以形成新的钕铁硼晶体结构。然后,将收集到的5967个三元材料样品用作主体结构。对于每个主体晶体结构,通过用Nd替代所有镧系元素位点、用Fe替代所有过渡金属位点以及用B替代所有轻元素位点来创建替代晶体结构。应用高通量第一性原理计算来评估新创建晶体结构的相稳定性,发现其中20种可能形成。应用基于监督和无监督学习技术的数据驱动方法来估计稳定性并分析新创建的钕铁硼晶体结构的结构 - 稳定性关系。为了预测新创建的钕铁硼结构的稳定性,从主体晶体结构中学习了三种监督学习模型:核岭回归、逻辑分类和决策树模型;这些模型分别实现了70.4%和68.7%的最大准确率和召回率。另一方面,我们提出的基于描述符相关性分析和高斯混合模型集成的无监督学习模型分别实现了72.9%和82.1%的准确率和召回率,明显优于监督模型。在捕捉和解释钕铁硼晶体结构的结构 - 稳定性关系时,无监督学习模型表明平均原子配位数和Fe位点的配位数是决定新替代钕铁硼晶体结构相稳定性的最重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0fb/7642775/3d8255782d92/m-07-01036-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验