Suppr超能文献

机器学习揭示了材料中的轨道相互作用。

Machine learning reveals orbital interaction in materials.

作者信息

Lam Pham Tien, Kino Hiori, Terakura Kiyoyuki, Miyake Takashi, Tsuda Koji, Takigawa Ichigaku, Chi Dam Hieu

机构信息

Japan Advanced Institute of Science and Technology, Nomi, Japan.

Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba, Japan.

出版信息

Sci Technol Adv Mater. 2017 Oct 26;18(1):756-765. doi: 10.1080/14686996.2017.1378060. eCollection 2017.

Abstract

We propose a novel representation of materials named an 'orbital-field matrix (OFM)', which is based on the distribution of valence shell electrons. We demonstrate that this new representation can be highly useful in mining material data. Experimental investigation shows that the formation energies of crystalline materials, atomization energies of molecular materials, and local magnetic moments of the constituent atoms in bimetal alloys of lanthanide metal and transition-metal can be predicted with high accuracy using the OFM. Knowledge regarding the role of the coordination numbers of the transition-metal and lanthanide elements in determining the local magnetic moments of the transition-metal sites can be acquired directly from decision tree regression analyses using the OFM.

摘要

我们提出了一种名为“轨道场矩阵(OFM)”的材料新表示法,它基于价层电子的分布。我们证明这种新表示法在挖掘材料数据方面非常有用。实验研究表明,使用OFM可以高精度地预测晶体材料的形成能、分子材料的原子化能以及镧系金属与过渡金属双金属合金中组成原子的局部磁矩。关于过渡金属和镧系元素的配位数在确定过渡金属位点局部磁矩中的作用的知识,可以直接从使用OFM的决策树回归分析中获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deb9/5678453/9e4835653e7c/TSTA_A_1378060_UF0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验