Suppr超能文献

通过由PPM负载的齐格勒-纳塔催化剂进行受限聚合获得的线性、螺旋状聚乙烯纳米纤维和聚乙烯微球的高熔点

High Melting Point of Linear, Spiral Polyethylene Nanofibers and Polyethylene Microspheres Obtained Through Confined Polymerization by a PPM-Supported Ziegler-Natta Catalyst.

作者信息

Xiao Yu, Dai Xiying, Wang Kui, Zhou Guangyuan

机构信息

State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute, No.18 Binhe Avenue, Changping District, Beijing, 102209, P. R. China.

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), No. 5625 Renmin Rd., Changchun, Jilin, 130022, P. R. China.

出版信息

ChemistryOpen. 2020 Nov 12;9(11):1173-1180. doi: 10.1002/open.202000290. eCollection 2020 Nov.

Abstract

In this work, different types of polyethylene (linear, spiral nanofibers and microspheres) were obtained via confined polymerization by a PPM-supported Ziegler-Natta catalyst. Firstly, the Ziegler-Natta catalyst was chemical bonded inside the porous polymer microspheres (PPMs) supports with different pore diameter and supports size through chemical reaction. Then slightly and highly confined polymerization occurred in the PPM-supported Ziegler-Natta catalysts. SEM results illustrated that the slightly confined polymerization was easy to obtain linear and spiral nanofibers, and the nanofibers were observed in polyethylene catalyzed by PPMs-1#/cat and PPMs-2#/cat with low pore diameter (about 23 nm). Furthermore, the highly confined polymerization produced polyethylene microspheres, which obtained through other PPM-supported Ziegler-Natta catalysts with high pore diameter. In addition, high second melting point (: up to 143.3 °C) is a unique property of the polyethylene obtained by the PPM-supported Ziegler-Natta catalyst after removing the residue through physical treatment. The high was ascribed to low surface free energy (), which was owing to the entanglement of polyethylene polymerized in the PPMs supports with interconnected multi-modal pore structure.

摘要

在这项工作中,通过由PPM负载的齐格勒-纳塔催化剂进行受限聚合获得了不同类型的聚乙烯(线性、螺旋纳米纤维和微球)。首先,通过化学反应将齐格勒-纳塔催化剂化学键合在具有不同孔径和载体尺寸的多孔聚合物微球(PPMs)载体内部。然后在PPM负载的齐格勒-纳塔催化剂中发生轻度和高度受限聚合。扫描电子显微镜(SEM)结果表明,轻度受限聚合易于获得线性和螺旋纳米纤维,并且在由低孔径(约23 nm)的PPMs-1#/cat和PPMs-2#/cat催化的聚乙烯中观察到了纳米纤维。此外,高度受限聚合产生了聚乙烯微球,其通过其他具有高孔径的PPM负载的齐格勒-纳塔催化剂获得。另外,通过物理处理去除残余物后,由PPM负载的齐格勒-纳塔催化剂获得的聚乙烯具有独特的高第二熔点(高达143.3 °C)。高熔点归因于低表面自由能(),这是由于在具有相互连接的多峰孔结构的PPMs载体中聚合的聚乙烯的缠结所致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验