Liang Wenhua, Liu Dan, Li Min, Wang Wei, Qin Zheng, Zhang Jian, Zhang Yong, Hu Yang, Bao Hairong, Xiang Yi, Wang Bo, Wu Jing, Sun Jianyu, Hu Chengping, Ye Xianwei, Zhang Xiangyan, Xiao Wei, Yun Chunmei, Sun Dejun, Wang Wei, Chang Ning, Zhang Yunhui, Zhao Jianping, Zhang Xin, Xu Jinfu, Wu Di, Liu Xiaoju, Guo Yubiao, Zhang Qichuan, Zhang Wei, Yang Lan, Li Zhanqing, Zhang Xiaoju, Han Baohui, Tong Zhaohui, He Jianxing, Qu Jieming, Fan Jian-Bing, Zhong Nanshan
Department of Thoracic Surgery/Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & Health, China State Key Laboratory and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China.
Transl Lung Cancer Res. 2020 Oct;9(5):2016-2026. doi: 10.21037/tlcr-20-701.
Lung nodules are a diagnostic challenge. Current clinical management of lung nodule patients is inefficient and therefore causes patient misclassification, which increases healthcare expenses. However, a precise and robust lung nodule classifier to minimize discomfort for patients and healthcare costs is still lacking. The aim of the present protocol is to evaluate the effectiveness of using a liquid biopsy classifier to diagnose nodules compared to physician estimates and whether the classifier can reduce the number of unnecessary biopsies in benign cases.
A prospective cohort of 10,560 patients enrolled at 23 clinical centers in China with non-calcified pulmonary nodules, ranging from 0.5 to 3 cm in diameter, indicated by LDCT or CT will be included. After signed consent forms, the participants' pulmonary nodules will be assessed using three evaluation tools: (I) physician cancer probability estimates (II) validated lung nodule risk models, including Mayo Clinic and Veteran's Affairs models (III) ctDNA methylation classifier previously established. Each patient will undergo LDCT/CT follow-ups for 2 to 3 years and their information and one blood sample will be collected at baseline, 3, 6, 12, 24 and 36 months. The primary study outcomes will be the diagnostic accuracy of the methylation classifier in the cohort. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) will be used to compare the diagnostic value of each testing tool in differentiating benign and malignant pulmonary nodules.
We are conducting an observational study to explore the accuracy of using a ctDNA methylation classifier for incidental lung nodules diagnosis.
Clinicaltrials.gov NCT03651986.
肺结节的诊断颇具挑战。目前肺结节患者的临床管理效率低下,进而导致患者分类错误,增加了医疗费用。然而,仍缺乏一种精确且可靠的肺结节分类器,以尽量减少患者的不适和医疗成本。本方案的目的是评估与医生的判断相比,使用液体活检分类器诊断结节的有效性,以及该分类器能否减少良性病例中不必要的活检数量。
将纳入一个前瞻性队列,该队列由在中国23个临床中心招募的10560例患者组成,这些患者经低剂量计算机断层扫描(LDCT)或计算机断层扫描(CT)显示有直径为0.5至3厘米的非钙化肺结节。签署知情同意书后,将使用三种评估工具对参与者的肺结节进行评估:(I)医生对癌症概率的估计;(II)经过验证的肺结节风险模型,包括梅奥诊所模型和退伍军人事务部模型;(III)先前建立的循环肿瘤DNA(ctDNA)甲基化分类器。每位患者将接受2至3年的LDCT/CT随访,并在基线、3、6、12、24和36个月时收集其信息和一份血液样本。主要研究结果将是甲基化分类器在该队列中的诊断准确性。敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)将用于比较每种检测工具在区分良性和恶性肺结节方面的诊断价值。
我们正在进行一项观察性研究,以探索使用ctDNA甲基化分类器诊断偶然发现的肺结节的准确性。
Clinicaltrials.gov NCT03651986。