Suppr超能文献

肺癌筛查及筛查后肺结节管理综合系统的开发与验证:一项概念验证研究(ASCEND-LUNG)

Development and validation of an integrated system for lung cancer screening and post-screening pulmonary nodules management: a proof-of-concept study (ASCEND-LUNG).

作者信息

Jin Yichen, Mu Wei, Shi Yezhen, Qi Qingyi, Wang Wenxiang, He Yue, Sun Xiaoran, Yang Bo, Cui Peng, Li Chengcheng, Liu Fang, Liu Yuxia, Wang Guoqiang, Zhao Jing, Zhang Yuzi, Zhang Shuaitong, Cao Caifang, Sun Chao, Hong Nan, Cai Shangli, Tian Jie, Yang Fan, Chen Kezhong

机构信息

Department of Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Peking University People's Hospital, Beijing, 100044, China.

Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.

出版信息

EClinicalMedicine. 2024 Aug 3;75:102769. doi: 10.1016/j.eclinm.2024.102769. eCollection 2024 Sep.

Abstract

BACKGROUND

In order to address the low compliance and dissatisfied specificity of low-dose computed tomography (LDCT), efficient and non-invasive approaches are needed to complement its limitations for lung cancer screening and management. The ASCEND-LUNG study is a prospective two-stage case-control study designed to evaluate the performance of a liquid biopsy-based comprehensive lung cancer screening and post-screening pulmonary nodules management system.

METHODS

We aimed to develop a comprehensive lung cancer system called Peking University Lung Cancer Screening and Management System (PKU-LCSMS) which comprises a lung cancer screening model to identify specific populations requiring LDCT and an artificial intelligence-aided (AI-aided) pulmonary nodules diagnostic model to classify pulmonary nodules following LDCT. A dataset of 465 participants (216 cancer, 47 benign, 202 non-cancer control) were used for the two models' development phase. For the lung cancer screening model development, cancer participants were randomly split at a ratio of 1:1 into the train and validation cohorts, and then non-cancer controls were age-matched to the cancer cases in a 1:1 ratio. Similarly, for the AI-aided pulmonary nodules model, cancer and benign participants were also randomly divided at a ratio of 2:1 into the train and validation cohorts. Subsequently, during the model validation phase, sensitivity and specificity were validated using an independent validation cohort consisting of 291 participants (140 cancer, 25 benign, 126 non-cancer control). Prospectively collected blood samples were analyzed for multi-omics including cell-free DNA (cfDNA) methylation, mutation, and serum protein. Computerized tomography (CT) images data was also obtained. Paired tissue samples were additionally analyzed for DNA methylation, DNA mutation, and messenger RNA (mRNA) expression to further explore the potential biological mechanisms. This study is registered with ClinicalTrials.gov, NCT04817046.

FINDINGS

Baseline blood samples were evaluated for the whole screening and diagnostic process. The cfDNA methylation-based lung cancer screening model exhibited the highest area under the curve (AUC) of 0.910 (95% CI, 0.869-0.950), followed by the protein model (0.891 [95% CI, 0.845-0.938]) and lastly the mutation model (0.577 [95% CI, 0.482-0.672]). Further, the final screening model, which incorporated cfDNA methylation and protein features, achieved an AUC of 0.963 (95% CI, 0.942-0.984). In the independent validation cohort, the multi-omics screening model showed a sensitivity of 99.2% (95% CI, 0.957-1.000) at a specificity of 56.3% (95% CI, 0.472-0.652). For the AI-aided pulmonary nodules diagnostic model, which incorporated cfDNA methylation and CT images features, it yielded a sensitivity of 81.1% (95% CI, 0.732-0.875), a specificity of 76.0% (95% CI, 0.549-0.906) in the independent validation cohort. Furthermore, four differentially methylated regions (DMRs) were shared in the lung cancer screening model and the AI-aided pulmonary nodules diagnostic model.

INTERPRETATION

We developed and validated a liquid biopsy-based comprehensive lung cancer screening and management system called PKU-LCSMS which combined a blood multi-omics based lung cancer screening model incorporating cfDNA methylation and protein features and an AI-aided pulmonary nodules diagnostic model integrating CT images and cfDNA methylation features in sequence to streamline the entire process of lung cancer screening and post-screening pulmonary nodules management. It might provide a promising applicable solution for lung cancer screening and management.

FUNDING

This work was supported by Science, Science, Technology & Innovation Project of Xiongan New Area, Beijing Natural Science Foundation, CAMS Innovation Fund for Medical Sciences (CIFMS), Clinical Medicine Plus X-Young Scholars Project of Peking University, the Fundamental Research Funds for the Central Universities, Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, Peking University People's Hospital Research and Development Funds, National Key Research and Development Program of China, and the fundamental research funds for the central universities.

摘要

背景

为了解决低剂量计算机断层扫描(LDCT)的低依从性和不满意的特异性问题,需要高效且无创的方法来补充其在肺癌筛查和管理方面的局限性。ASCEND-LUNG研究是一项前瞻性两阶段病例对照研究,旨在评估基于液体活检的综合肺癌筛查和筛查后肺结节管理系统的性能。

方法

我们旨在开发一个名为北京大学肺癌筛查与管理系统(PKU-LCSMS)的综合肺癌系统,该系统包括一个用于识别需要进行LDCT的特定人群的肺癌筛查模型,以及一个用于对LDCT后的肺结节进行分类的人工智能辅助(AI辅助)肺结节诊断模型。465名参与者(216名癌症患者、47名良性病变者、202名非癌症对照者)的数据集用于两个模型的开发阶段。对于肺癌筛查模型的开发,癌症参与者以1:1的比例随机分为训练队列和验证队列,然后非癌症对照者以1:1的比例与癌症病例进行年龄匹配。同样,对于AI辅助肺结节模型,癌症和良性参与者也以2:1的比例随机分为训练队列和验证队列。随后,在模型验证阶段,使用由291名参与者(140名癌症患者、25名良性病变者、126名非癌症对照者)组成的独立验证队列来验证敏感性和特异性。对前瞻性收集的血液样本进行多组学分析,包括游离DNA(cfDNA)甲基化、突变和血清蛋白。还获得了计算机断层扫描(CT)图像数据。另外对配对的组织样本进行DNA甲基化、DNA突变和信使核糖核酸(mRNA)表达分析,以进一步探索潜在的生物学机制。本研究已在ClinicalTrials.gov注册,注册号为NCT04817046。

结果

对整个筛查和诊断过程的基线血液样本进行了评估。基于cfDNA甲基化的肺癌筛查模型的曲线下面积(AUC)最高,为0.910(95%CI,0.869 - 0.950),其次是蛋白质模型(0.891 [95%CI,0.845 - 0.938]),最后是突变模型(0.577 [95%CI,0.482 - 0.672])。此外,结合cfDNA甲基化和蛋白质特征的最终筛查模型的AUC为0.963(95%CI,0.942 - 0.984)。在独立验证队列中,多组学筛查模型在特异性为56.3%(95%CI,0.472 - 0.652)时的敏感性为99.2%(95%CI,0.957 - 1.000)。对于结合cfDNA甲基化和CT图像特征的AI辅助肺结节诊断模型,在独立验证队列中的敏感性为81.1%(95%CI,0.732 - 0.875),特异性为76.0%(95%CI,0.549 - 0.906)。此外,肺癌筛查模型和AI辅助肺结节诊断模型共有四个差异甲基化区域(DMRs)。

解读

我们开发并验证了一个名为PKU-LCSMS的基于液体活检的综合肺癌筛查和管理系统,该系统依次结合了一个基于血液多组学的肺癌筛查模型,该模型纳入了cfDNA甲基化和蛋白质特征,以及一个整合了CT图像和cfDNA甲基化特征的AI辅助肺结节诊断模型,以简化肺癌筛查和筛查后肺结节管理的整个过程。它可能为肺癌筛查和管理提供一个有前景的适用解决方案。

资金支持

本研究得到了雄安新区科技创新项目、北京市自然科学基金、中国医学科学院医学与健康科技创新工程(CIFMS)、北京大学临床医学+X青年学者项目、中央高校基本科研业务费、中国医学科学院早期非小细胞肺癌智能诊疗研究单元、国家自然科学基金、北京大学人民医院科研发展基金、国家重点研发计划以及中央高校基本科研业务费的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51d/11334824/557899168d3d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验