Suppr超能文献

年龄对静息状态 BOLD 信号变异性的影响可以用心血管和脑血管因素来解释。

The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors.

机构信息

Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.

Department of Psychology, Centre for Speech, Language and the Brain, University of Cambridge, Cambridge, UK.

出版信息

Psychophysiology. 2021 Jul;58(7):e13714. doi: 10.1111/psyp.13714. Epub 2020 Nov 18.

Abstract

Accurate identification of brain function is necessary to understand neurocognitive aging, and thereby promote health and well-being. Many studies of neurocognitive aging have investigated brain function with the blood-oxygen level-dependent (BOLD) signal measured by functional magnetic resonance imaging. However, the BOLD signal is a composite of neural and vascular signals, which are differentially affected by aging. It is, therefore, essential to distinguish the age effects on vascular versus neural function. The BOLD signal variability at rest (known as resting state fluctuation amplitude, RSFA), is a safe, scalable, and robust means to calibrate vascular responsivity, as an alternative to breath-holding and hypercapnia. However, the use of RSFA for normalization of BOLD imaging assumes that age differences in RSFA reflecting only vascular factors, rather than age-related differences in neural function (activity) or neuronal loss (atrophy). Previous studies indicate that two vascular factors, cardiovascular health (CVH) and cerebrovascular function, are insufficient when used alone to fully explain age-related differences in RSFA. It remains possible that their joint consideration is required to fully capture age differences in RSFA. We tested the hypothesis that RSFA no longer varies with age after adjusting for a combination of cardiovascular and cerebrovascular measures. We also tested the hypothesis that RSFA variation with age is not associated with atrophy. We used data from the population-based, lifespan Cam-CAN cohort. After controlling for cardiovascular and cerebrovascular estimates alone, the residual variance in RSFA across individuals was significantly associated with age. However, when controlling for both cardiovascular and cerebrovascular estimates, the variance in RSFA was no longer associated with age. Grey matter volumes did not explain age differences in RSFA, after controlling for CVH. The results were consistent between voxel-level analysis and independent component analysis. Our findings indicate that cardiovascular and cerebrovascular signals are together sufficient predictors of age differences in RSFA. We suggest that RSFA can be used to separate vascular from neuronal factors, to characterize neurocognitive aging. We discuss the implications and make recommendations for the use of RSFA in the research of aging.

摘要

准确识别大脑功能对于理解神经认知老化至关重要,从而促进健康和幸福感。许多神经认知老化研究使用功能磁共振成像(fMRI)测量的血氧水平依赖(BOLD)信号来研究大脑功能。然而,BOLD 信号是神经和血管信号的组合,它们受到老化的不同影响。因此,区分血管和神经功能对年龄的影响至关重要。静息状态下的 BOLD 信号变异性(称为静息状态波动幅度,RSFA)是一种安全、可扩展且稳健的方法,可以校准血管反应性,作为屏气和高碳酸血症的替代方法。然而,使用 RSFA 对 BOLD 成像进行归一化的假设是,RSFA 的年龄差异仅反映血管因素,而不是与神经功能(活动)或神经元丢失(萎缩)相关的年龄相关差异。先前的研究表明,当单独使用时,两种血管因素,心血管健康(CVH)和脑血管功能,不足以完全解释 RSFA 中的年龄相关差异。仍然有可能需要联合考虑这两个因素才能完全捕捉 RSFA 中的年龄差异。我们检验了以下假设:在调整心血管和脑血管测量值的组合后,RSFA 不再随年龄变化。我们还检验了以下假设:RSFA 随年龄的变化与萎缩无关。我们使用基于人群的、寿命范围的 Cam-CAN 队列的数据。单独控制心血管和脑血管估计后,个体之间 RSFA 的剩余方差与年龄显著相关。然而,当控制心血管和脑血管估计时,RSFA 的方差与年龄不再相关。控制 CVH 后,灰质体积并不能解释 RSFA 中的年龄差异。在体素水平分析和独立成分分析之间结果一致。我们的研究结果表明,心血管和脑血管信号共同足以预测 RSFA 中的年龄差异。我们建议 RSFA 可用于分离血管和神经元因素,以描述神经认知老化。我们讨论了其意义,并为 RSFA 在老化研究中的使用提出了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ec/8244027/3ff6efa27b08/PSYP-58-e13714-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验