Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States.
Langmuir. 2020 Dec 1;36(47):14157-14165. doi: 10.1021/acs.langmuir.0c01613. Epub 2020 Nov 19.
The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein-particle and protein-protein interactions, such as electrostatics, van der Waals, hydrophobic, hydrogen bonding, and solvation. The experimental parameters influencing these interactions, and thus governing the protein corona formation on nanoparticles, are currently poorly understood. This lack of understanding is due to the complexity in the surface charge distribution and anisotropic shape of the protein molecules. Here, we investigate the effect of pH and salinity on the characteristics of corona formed by myoglobin on silica nanoparticles. We experimentally measure and theoretically model the adsorption isotherms of myoglobin binding to silica nanoparticles. By combining adsorption studies with surface electrostatic mapping of myoglobin, we demonstrate that a monolayered hard corona is formed in low salinity dispersions, which transforms into a multilayered hard + soft corona upon the addition of salt. We attribute the observed changes in protein adsorption behavior with increasing pH and salinity to the change in electrostatic interactions and surface charge regulation effects. This study provides insights into the mechanism of protein adsorption and corona formation on nanoparticles, which would guide future studies on optimizing nanoparticle design for maximum functional benefits and minimum toxicity.
蛋白质从水相介质中的吸附导致纳米粒子表面形成蛋白质冠。蛋白质冠的形成受蛋白质-粒子和蛋白质-蛋白质相互作用的复杂相互作用的控制,如静电、范德华力、疏水力、氢键和溶剂化。目前,影响这些相互作用并因此控制纳米粒子上蛋白质冠形成的实验参数理解得很差。这种缺乏理解是由于蛋白质分子的表面电荷分布和各向异性形状的复杂性。在这里,我们研究 pH 值和盐度对肌红蛋白在二氧化硅纳米粒子上形成的冠特征的影响。我们通过实验测量和理论建模来测量肌红蛋白与二氧化硅纳米粒子结合的吸附等温线。通过将吸附研究与肌红蛋白的表面静电映射相结合,我们证明在低盐度分散体中形成了单层硬冠,而在添加盐后,它转变为多层硬+软冠。我们将观察到的随着 pH 值和盐度增加而发生的蛋白质吸附行为的变化归因于静电相互作用和表面电荷调节效应的变化。这项研究提供了对纳米粒子上蛋白质吸附和冠形成机制的深入了解,这将指导未来关于优化纳米粒子设计以获得最大功能效益和最小毒性的研究。