Suppr超能文献

三维晶格上混合自旋Blume-Capel模型中的三临界点:Metropolis和Wang-Landau抽样方法。

Tricritical point in the mixed-spin Blume-Capel model on three-dimensional lattices: Metropolis and Wang-Landau sampling approaches.

作者信息

Azhari Mouhcine, Yu Unjong

机构信息

Fakultät für Mathematik und Naturwissenschaften Bergische Universität Wuppertal, 42097 Wuppertal, Germany and Laboratory of High Energy Physics and Condensed Matter, Hassan II University-Casablanca, Faculty of Sciences Aïn-Chock, 5366 Maarif, Casablanca 20100, Morocco.

Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.

出版信息

Phys Rev E. 2020 Oct;102(4-1):042113. doi: 10.1103/PhysRevE.102.042113.

Abstract

We investigate the mixed-spin Blume-Capel model with spin-1/2 and spin-S (S=1, 2, and 3) on the simple cubic and body-centered cubic lattices with single-ion-splitting crystal field (Δ) by using the Metropolis and the Wang-Landau Monte Carlo methods. We show that the two methods are complementary: The Wang-Landau algorithm is efficient to construct phase diagrams and the Metropolis algorithm allows access to large-sized lattices. By numerical simulations, we prove that the tricritical point is independent of S for both lattices. The positions of the tricritical point in the phase diagram are determined as [Δ_{t}/J=2.978(1); k_{B}T_{t}/J=0.439(1)] and [Δ_{t}/J=3.949(1); k_{B}T_{t}/J=0.854(1)] for the simple cubic and the body-centered cubic lattices, respectively. A very strong supercritical slowing down and hysteresis were observed in the Metropolis update close to first-order transitions for Δ>Δ_{t} in the body-centered cubic lattice. In addition, for both lattices we found a line of compensation points, where the two sublattice magnetizations have the same magnitude. We show that the compensation lines are also S independent.

摘要

我们使用Metropolis方法和Wang-Landau蒙特卡罗方法,研究了在具有单离子分裂晶体场(Δ)的简单立方晶格和体心立方晶格上,自旋为1/2和自旋为S(S = 1、2和3)的混合自旋Blume-Capel模型。我们表明这两种方法是互补的:Wang-Landau算法在构建相图方面效率很高,而Metropolis算法能够处理大尺寸晶格。通过数值模拟,我们证明了对于这两种晶格,三临界点均与S无关。对于简单立方晶格和体心立方晶格,相图中三临界点的位置分别确定为[Δt/J = 2.978(1); kB Tt/J = 0.439(1)]和[Δt/J = 3.949(1); kB Tt/J = 0.854(1)]。在体心立方晶格中,当Δ>Δt时,在接近一级相变的Metropolis更新中观察到非常强烈的超临界慢化和磁滞现象。此外,对于这两种晶格,我们都发现了一条补偿点线,其中两个亚晶格磁化强度大小相同。我们表明补偿线也与S无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验