Erkol Şirag, Mazzilli Dario, Radicchi Filippo
Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA.
Phys Rev E. 2020 Oct;102(4-1):042307. doi: 10.1103/PhysRevE.102.042307.
We consider the optimization problem of seeding a spreading process on a temporal network so that the expected size of the resulting outbreak is maximized. We frame the problem for a spreading process following the rules of the susceptible-infected-recovered model with temporal scale equal to the one characterizing the evolution of the network topology. We perform a systematic analysis based on a corpus of 12 real-world temporal networks and quantify the performance of solutions to the influence maximization problem obtained using different level of information about network topology and dynamics. We find that having perfect knowledge of the network topology but in a static and/or aggregated form is not helpful in solving the influence maximization problem effectively. Knowledge, even if partial, of the early stages of the network dynamics appears instead essential for the identification of quasioptimal sets of influential spreaders.
我们考虑在时间网络上为传播过程进行种子节点选择的优化问题,以使最终爆发的预期规模最大化。我们针对遵循易感-感染-康复模型规则的传播过程构建该问题,其时间尺度与表征网络拓扑演化的时间尺度相同。我们基于12个真实世界时间网络的语料库进行系统分析,并量化使用不同网络拓扑和动态信息水平获得的影响力最大化问题解决方案的性能。我们发现,拥有网络拓扑的完美知识但以静态和/或聚合形式呈现,对于有效解决影响力最大化问题并无帮助。相反,即使是关于网络动态早期阶段的部分知识,对于识别有影响力传播者的近似最优集似乎也是必不可少的。