Suppr超能文献

基因开关的随机表观遗传动力学。

Stochastic epigenetic dynamics of gene switching.

机构信息

Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan.

Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.

出版信息

Phys Rev E. 2020 Oct;102(4-1):042408. doi: 10.1103/PhysRevE.102.042408.

Abstract

Epigenetic modifications of histones crucially affect eukaryotic gene activity, while the epigenetic histone state is largely determined by the binding of specific factors such as the transcription factors (TFs) to DNA. Here, the way in which the TFs and the histone state are dynamically correlated is not obvious when the TF synthesis is regulated by the histone state. This type of feedback regulatory relation is ubiquitous in gene networks to determine cell fate in differentiation and other cell transformations. To gain insights into such dynamical feedback regulations, we theoretically analyze a model of epigenetic gene switching by extending the Doi-Peliti operator formalism of reaction kinetics to the problem of coupled molecular processes. Spin-1 and spin-1/2 coherent-state representations are introduced to describe stochastic reactions of histones and binding or unbinding of TFs in a unified way, which provides a concise view of the effects of timescale difference among these molecular processes; even in the case that binding or unbinding of TFs to or from DNA is adiabatically fast, the slow nonadiabatic histone dynamics gives rise to a distinct circular flow of the probability flux around basins in the landscape of the gene state distribution, which leads to hysteresis in gene switching. In contrast to the general belief that the change in the amount of TF precedes the histone state change, flux drives histones to be modified prior to the change in the amount of TF in self-regulating circuits. Flux-landscape analyses shed light on the nonlinear nonadiabatic mechanism of epigenetic cell fate decision making.

摘要

组蛋白的表观遗传修饰对真核基因活性至关重要,而表观遗传组蛋白状态在很大程度上取决于特定因子(如转录因子(TFs))与 DNA 的结合。当 TF 的合成受到组蛋白状态的调控时,TF 和组蛋白状态之间的动态相关性就不明显了。这种类型的反馈调节关系在基因网络中无处不在,以确定分化和其他细胞转化中的细胞命运。为了深入了解这种动态反馈调节,我们通过将反应动力学的 Doi-Peliti 算子形式扩展到耦合分子过程的问题,从理论上分析了一种表观遗传基因开关模型。自旋-1 和自旋-1/2 相干态表示被引入,以统一描述组蛋白的随机反应和 TF 的结合或解结合,这为这些分子过程之间的时间尺度差异的影响提供了简洁的视角;即使 TF 与 DNA 的结合或解结合是绝热快速的,缓慢的非绝热组蛋白动力学也会导致基因状态分布景观中概率通量围绕盆地的明显循环流动,从而导致基因开关中的滞后现象。与 TF 数量变化先于组蛋白状态变化的一般观点相反,在自调节电路中,通量促使组蛋白在 TF 数量变化之前发生修饰。通量-景观分析揭示了表观遗传细胞命运决策的非线性非绝热机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验