Suppr超能文献

在一项小样本、序贯、多分配、随机试验中,用贝叶斯方法比较剂量水平与安慰剂。

Bayesian methods to compare dose levels with placebo in a small n, sequential, multiple assignment, randomized trial.

机构信息

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.

Health Informatics Institute, University of South Florida, Tampa, Florida, USA.

出版信息

Stat Med. 2021 Feb 20;40(4):963-977. doi: 10.1002/sim.8813. Epub 2020 Nov 20.

Abstract

Clinical trials studying treatments for rare diseases are challenging to design and conduct due to the limited number of patients eligible for the trial. One design used to address this challenge is the small n, sequential, multiple assignment, randomized trial (snSMART). We propose a new snSMART design that investigates the response rates of a drug tested at a low and high dose compared with placebo. Patients are randomized to an initial treatment (stage 1). In stage 2, patients are rerandomized, depending on their initial treatment and their response to that treatment in stage 1, to either the same or a different dose of treatment. Data from both stages are used to determine the efficacy of the active treatment. We present a Bayesian approach where information is borrowed between stage 1 and stage 2. We compare our approach to standard methods using only stage 1 data and a log-linear Poisson model that uses data from both stages where parameters are estimated using generalized estimating equations. We observe that the Bayesian method has smaller root-mean-square-error and 95% credible interval widths than standard methods in the tested scenarios. We conclude that it is advantageous to utilize data from both stages for a primary efficacy analysis and that the specific snSMART design shown here can be used in the registration of a drug for the treatment of rare diseases.

摘要

由于适合试验的患者数量有限,研究罕见病治疗方法的临床试验在设计和实施方面具有挑战性。一种用于应对这一挑战的设计方法是小样本、序贯、多次分配、随机试验(snSMART)。我们提出了一种新的 snSMART 设计,用于研究低剂量和高剂量药物与安慰剂相比的反应率。患者被随机分配到初始治疗(第 1 阶段)。在第 2 阶段,根据患者在第 1 阶段的初始治疗和对该治疗的反应,将患者重新随机分配到相同或不同剂量的治疗。两个阶段的数据用于确定有效治疗的疗效。我们提出了一种贝叶斯方法,该方法在第 1 阶段和第 2 阶段之间借用信息。我们将我们的方法与仅使用第 1 阶段数据的标准方法以及使用来自两个阶段的数据的对数线性泊松模型进行比较,其中使用广义估计方程估计参数。我们观察到,在测试场景中,贝叶斯方法的均方根误差和 95%置信区间宽度小于标准方法。我们得出结论,在主要疗效分析中利用两个阶段的数据是有利的,并且这里显示的特定 snSMART 设计可用于罕见病治疗药物的注册。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验