Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel, and Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.
DeepVision Lab, Sheba Medical Center, Tel Hashomer, Israel.
J Crohns Colitis. 2021 May 4;15(5):749-756. doi: 10.1093/ecco-jcc/jjaa234.
Passable intestinal strictures are frequently detected on capsule endoscopy [CE]. Such strictures are a major component of inflammatory scores. Deep neural network technology for CE is emerging. However, the ability of deep neural networks to identify intestinal strictures on CE images of Crohn's disease [CD] patients has not yet been evaluated.
We tested a state-of-the-art deep learning network for detecting CE images of strictures. Images of normal mucosa, mucosal ulcers, and strictures of Crohn's disease patients were retrieved from our previously described CE image bank. Ulcers were classified as per degree of severity. We performed 10 cross-validation experiments. A clear patient-level separation was maintained between training and testing sets.
Overall, the entire dataset included 27 892 CE images: 1942 stricture images, 14 266 normal mucosa images, and 11 684 ulcer images [mild: 7075, moderate: 2386, severe: 2223]. For classifying strictures versus non-strictures, the network exhibited an average accuracy of 93.5% [±6.7%]. The network achieved excellent differentiation between strictures and normal mucosa (area under the curve [AUC] 0.989), strictures and all ulcers [AUC 0.942], and between strictures and different grades of ulcers [for mild, moderate, and severe ulcers-AUCs 0.992, 0.975, and 0.889, respectively].
Deep neural networks are highly accurate in the detection of strictures on CE images in Crohn's disease. The network can accurately separate strictures from ulcers across the severity range. The current accuracy for the detection of ulcers and strictures by deep neural networks may allow for automated detection and grading of Crohn's disease-related findings on CE.
胶囊内镜[CE]常可检测到可通过的肠狭窄。此类狭窄是炎症评分的主要组成部分。用于 CE 的深度学习网络技术正在出现。然而,深度神经网络识别克罗恩病[CD]患者 CE 图像中肠狭窄的能力尚未得到评估。
我们测试了一种用于检测 CE 图像狭窄的最先进的深度学习网络。从我们之前描述的 CE 图像库中检索了正常黏膜、黏膜溃疡和克罗恩病患者的狭窄图像。溃疡按严重程度分类。我们进行了 10 次交叉验证实验。在训练集和测试集之间保持了明确的患者级别的分离。
总体而言,整个数据集包括 27892 张 CE 图像:1942 张狭窄图像、14266 张正常黏膜图像和 11684 张溃疡图像[轻度:7075 张、中度:2386 张、重度:2223 张]。对于将狭窄与非狭窄进行分类,该网络的平均准确率为 93.5%[±6.7%]。该网络在狭窄与正常黏膜之间实现了极好的区分(曲线下面积[AUC]0.989),狭窄与所有溃疡之间的区分(AUC 0.942),以及狭窄与不同严重程度的溃疡之间的区分(对于轻度、中度和重度溃疡,AUC 分别为 0.992、0.975 和 0.889)。
深度学习网络在克罗恩病 CE 图像中狭窄的检测中具有很高的准确性。该网络可以准确地区分从严重程度上不同的溃疡到狭窄。目前,深度学习网络用于检测溃疡和狭窄的准确性可能允许在 CE 上自动检测和分级克罗恩病相关发现。