Suppr超能文献

肿瘤学中单克隆抗体的暴露-反应分析中的混杂因素及缓解策略。

Confounding factors in exposure-response analyses and mitigation strategies for monoclonal antibodies in oncology.

机构信息

Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA.

Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA.

出版信息

Br J Clin Pharmacol. 2021 Jun;87(6):2493-2501. doi: 10.1111/bcp.14662. Epub 2020 Dec 7.

Abstract

Dose selection and optimization is an important topic in drug development to maximize treatment benefits for all patients. While exposure-response (E-R) analysis is a useful method to inform dose-selection strategy, in oncology, special considerations for prognostic factors are needed due to their potential to confound the E-R analysis for monoclonal antibodies. The current review focuses on 3 different approaches to mitigate the confounding effects for monoclonal antibodies in oncology: (i) Cox-proportional hazards modelling and case-matching; (ii) tumour growth inhibition-overall survival modelling; and (iii) multiple dose level study design. In the presence of confounding effects, studying multiple dose levels may be required to reveal the true E-R relationship. However, it is impractical for pivotal trials in oncology drug development programmes. Therefore, the strengths and weaknesses of the other 2 approaches are considered, and the favourable utility of tumour growth inhibition-overall survival modelling to address confounding in E-R analyses is described. In the broader scope of oncology drug development, this review discusses the downfall of the current emphasis on E-R analyses using data from single dose level trials and proposes that development programmes be designed to study more dose levels in earlier trials.

摘要

剂量选择和优化是药物开发中的一个重要课题,旨在最大限度地提高所有患者的治疗效果。虽然暴露-反应(E-R)分析是一种有用的方法,可以为剂量选择策略提供信息,但在肿瘤学中,由于预后因素有可能使单克隆抗体的 E-R 分析复杂化,因此需要特殊考虑。本综述重点介绍了 3 种不同的方法,可减轻肿瘤学中单克隆抗体的混杂效应:(i)Cox 比例风险模型和病例匹配;(ii)肿瘤生长抑制-总生存模型;和(iii)多剂量水平研究设计。在存在混杂效应的情况下,可能需要研究多个剂量水平以揭示真实的 E-R 关系。然而,对于肿瘤学药物开发计划中的关键试验来说,这是不切实际的。因此,考虑了其他 2 种方法的优缺点,并描述了肿瘤生长抑制-总生存模型在解决 E-R 分析中的混杂问题方面的有利效用。在肿瘤学药物开发的更广泛范围内,本综述讨论了当前强调使用单剂量水平试验数据进行 E-R 分析的缺陷,并提出应设计开发计划在早期试验中研究更多的剂量水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验