Maar Ryan R, Katzman Benjamin D, Boyle Paul D, Staroverov Viktor N, Gilroy Joe B
Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada.
Angew Chem Int Ed Engl. 2021 Mar 1;60(10):5152-5156. doi: 10.1002/anie.202015036. Epub 2021 Feb 4.
Incorporation of cationic boron atoms into molecular frameworks is an established strategy for creating chemical species with unusual bonding and reactivity but is rarely thought of as a way of enhancing molecular optoelectronic properties. Using boron formazanate dyes as examples, we demonstrate that the wavelengths, intensities, and type of the first electronic transitions in BN heterocycles can be modulated by varying the charge, coordination number, and supporting ligands at the cationic boron atom. UV-vis absorption spectroscopy measurements and density-functional (DFT) calculations show that these modulations are caused by changes in the geometry and extent of π-conjugation of the boron formazanate ring. These findings suggest a new strategy for designing optoelectronic materials based on π-conjugated heterocycles containing boron and other main-group elements.
将阳离子硼原子引入分子骨架是一种已确立的策略,用于创造具有异常键合和反应性的化学物种,但很少被视为增强分子光电性质的一种方式。以硼甲脒染料为例,我们证明了BN杂环中首次电子跃迁的波长、强度和类型可以通过改变阳离子硼原子上的电荷、配位数和配位配体来调节。紫外可见吸收光谱测量和密度泛函(DFT)计算表明,这些调节是由硼甲脒环的几何形状和π共轭程度的变化引起的。这些发现为基于含硼和其他主族元素的π共轭杂环设计光电材料提出了一种新策略。