文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因型和宿主微生物组改变铜绿微囊藻和斜生栅藻之间的竞争关系。

Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.

机构信息

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Harmful Algae. 2020 Nov;99:101939. doi: 10.1016/j.hal.2020.101939. Epub 2020 Nov 4.


DOI:10.1016/j.hal.2020.101939
PMID:33218432
Abstract

Cyanobacterial harmful algal blooms (cyanoHABs) continue to increase in frequency and magnitude, threatening global freshwater ecosystems and services. In north-temperate lakes cyanobacteria appear in early summer, succeeding green algae as the dominant phytoplankton group, a pattern thought to be mediated by changes in temperature and bioavailable nutrients. To understand additional drivers of this successional pattern our study used reciprocal invasion experiments to examine the competitive interaction between Microcystis aeruginosa, a dominant contributor to cyanoHABs, and the green alga Chlorella sorokiniana. We considered two factors that may impact these interactions: (1) strain variation, with a specific emphasis on the presence or absence of the gene for the hepatotoxin microcystin, and (2) host-associated bacteria. We used toxic M. aeruginosa PCC 7806 (microcystin producing strain), a non-toxic mutant of PCC 7806, non-toxic M. aeruginosa PCC 9701 (non-microcystin producing strain), and C. sorokiniana. Each organism was available free of all bacteria (i.e., axenic) and with a re-introduced defined bacterial community to generate their xenic counterparts. Competitive interactions were assessed with reciprocal invasion experiments between paired xenic and paired axenic populations of C. sorokiniana and one of the two Microcystis strains, each assessed separately. Flow cytometry and random forest models were used to rapidly discriminate and quantify phytoplankton population densities with 99% accuracy. We found that M. aeruginosa PCC 7806, but not strain PCC 9701, could proliferate from low abundance in a steady-state population of C. sorokiniana. Further, the presence of bacteria allowed M. aeruginosa PCC 7806 to grow to a higher population density into an established C. sorokiniana population than when grown axenic. Conversely, when M. aeruginosa was dominant, C. sorokiniana was only able to proliferate from low density into the PCC 9701 strain, and only when axenic. The mutant of PCC 7806 lacking the ability to produce microcystin behaved similarly to the toxic wild-type, implying microcystin is not responsible for the difference in competitive abilities observed between the two wild-type strains. Quantification of microcystins (MCs) when PCC 7806 M. aeruginosa was introduced into the C. sorokiniana culture showed two-fold more MCs per cell when host-associated bacteria were absent compared to present in both species cultures. Our results show that the ability of M. aeruginosa to compete with C. sorokiniana is determined by genomic differences beyond genes involved in microcystin toxin generation and indicate an important role of host-associated bacteria in mediating phytoplankton interspecies interactions. These results expand our understanding of the key drivers of phytoplankton succession and the establishment and persistence of freshwater harmful cyanobacterial blooms.

摘要

蓝藻有害藻华(cyanoHABs)的频率和规模继续增加,威胁着全球淡水生态系统和服务。在北温带湖泊中,蓝藻在初夏出现,取代绿藻成为优势浮游植物群,这种模式被认为是由温度和生物可利用养分的变化介导的。为了了解这种演替模式的其他驱动因素,我们的研究使用相互入侵实验来研究微囊藻,一种导致 cyanoHABs 的主要贡献者,与绿藻集胞藻之间的竞争相互作用。我们考虑了两个可能影响这些相互作用的因素:(1)菌株变异,特别强调是否存在或不存在肝毒素微囊藻毒素的基因,以及(2)宿主相关细菌。我们使用了有毒的 M. aeruginosa PCC 7806(产生微囊藻毒素的菌株)、PCC 7806 的无毒突变体、无毒的 M. aeruginosa PCC 9701(不产生微囊藻毒素的菌株)和集胞藻 sorokiniana。每个生物体都没有任何细菌(即无菌),并且重新引入了定义明确的细菌群落以产生其异源对应物。通过微囊藻和两种微囊藻菌株之一的配对异源和配对无菌种群之间的相互入侵实验来评估竞争相互作用,每个实验分别进行评估。使用流式细胞术和随机森林模型以 99%的准确度快速区分和量化浮游植物种群密度。我们发现,M. aeruginosa PCC 7806 但不是菌株 PCC 9701 可以从集胞藻 sorokiniana 的稳定种群中低丰度增殖。此外,当存在细菌时,M. aeruginosa PCC 7806 可以在建立的集胞藻 sorokiniana 种群中生长到更高的种群密度,而在无菌时则不能。相反,当 M. aeruginosa 占优势时,集胞藻 sorokiniana 只能从低密度增殖到 PCC 9701 菌株,并且只能在无菌时才能增殖。缺乏产生微囊藻毒素能力的 PCC 7806 突变体表现得与有毒野生型相似,这意味着微囊藻毒素不是导致两种野生型菌株观察到的竞争能力差异的原因。当将 M. aeruginosa PCC 7806 引入集胞藻 sorokiniana 培养物中时,对微囊藻毒素(MCs)的定量显示,当宿主相关细菌不存在时,每个细胞中的 MCs 是存在于两种物种培养物中的两倍。我们的结果表明,M. aeruginosa 与集胞藻 sorokiniana 竞争的能力取决于基因组差异,而不仅仅是涉及微囊藻毒素生成的基因,并表明宿主相关细菌在介导浮游植物种间相互作用方面起着重要作用。这些结果扩展了我们对浮游植物演替以及淡水有害蓝藻水华的建立和持续存在的关键驱动因素的理解。

相似文献

[1]
Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.

Harmful Algae. 2020-11

[2]
Heterotrophic Bacteria Dominate Catalase Expression during Blooms.

Appl Environ Microbiol. 2022-7-26

[3]
Interspecific competition enhances microcystin production by Microcystis aeruginosa under the interactive influences of temperature and nutrients.

Water Res. 2024-11-1

[4]
Metagenomic and Metatranscriptomic Insights into Population Diversity of Blooms: Spatial and Temporal Dynamics of Genotypes, Including a Partial Operon That Can Be Abundant and Expressed.

Appl Environ Microbiol. 2022-5-10

[5]
Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment.

Environ Sci Pollut Res Int. 2019-12-1

[6]
Microcystin mcyA and mcyE Gene Abundances Are Not Appropriate Indicators of Microcystin Concentrations in Lakes.

PLoS One. 2015-5-6

[7]
Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.

PLoS One. 2018-5-23

[8]
Quantification of microcystin-producing and non-microcystin producing Microcystis populations during the 2009 and 2010 blooms in Lake Taihu using quantitative real-time PCR.

J Environ Sci (China). 2012

[9]
Algicidal activity of Morganella morganii against axenic and environmental strains of Microcystis aeruginosa: Compound combination effects.

Chemosphere. 2022-12

[10]
Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-forming Microcystis aeruginosa.

Mol Ecol. 2019-8-22

引用本文的文献

[1]
Selective enrichment of active bacterial taxa in the associated microbiome during colony growth.

PeerJ. 2025-4-4

[2]
Intraspecific divergence within mediates the dynamics of freshwater harmful algal blooms under climate warming scenarios.

Proc Biol Sci. 2025-2

[3]
Variation in resource competition traits among strains is affected by their microbiomes.

mLife. 2023-12-18

[4]
The Microcystis-microbiome interactions: origins of the colonial lifestyle.

FEMS Microbiol Ecol. 2024-3-12

[5]
Spatial and Temporal Characteristics of Phytoplankton Communities in Drinking Water Source Reservoirs in Shenzhen, China.

Plants (Basel). 2023-11-22

[6]
Effects of Phycosphere Bacteria on Their Algal Host Are Host Species-Specific and Not Phylogenetically Conserved.

Microorganisms. 2022-12-25

[7]
Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel Genera in Blooms Inferred from Metagenomic and Metatranscriptomic Evidence.

Appl Environ Microbiol. 2022-7-26

[8]
sp. nov., an Attached Bacterium of .

Front Microbiol. 2022-5-12

[9]
Dynamic Responses of Endosymbiotic Microbial Communities Within Colonies in North American Lakes to Altered Nitrogen, Phosphorus, and Temperature Levels.

Front Microbiol. 2022-2-10

[10]
Disentangling Diet- and Medium-Associated Microbes in Shaping Daphnia Gut Microbiome.

Microb Ecol. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索