Suppr超能文献

评估生态学中的自然实验:在评估遥感土地处理中使用合成对照。

Evaluating natural experiments in ecology: using synthetic controls in assessments of remotely sensed land treatments.

机构信息

US Geological Survey, Southwest Biological Science Center, Moab, Utah, 84054, USA.

Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, 88003, USA.

出版信息

Ecol Appl. 2021 Apr;31(3):e02264. doi: 10.1002/eap.2264. Epub 2021 Feb 5.

Abstract

Many important ecological phenomena occur on large spatial scales and/or are unplanned and thus do not easily fit within analytical frameworks that rely on randomization, replication, and interspersed a priori controls for statistical comparison. Analyses of such large-scale, natural experiments are common in the health and econometrics literature, where techniques have been developed to derive insight from large, noisy observational data sets. Here, we apply a technique from this literature, synthetic control, to assess landscape change with remote sensing data. The basic data requirements for synthetic control include (1) a discrete set of treated and untreated units, (2) a known date of treatment intervention, and (3) time series response data that include both pre- and post-treatment outcomes for all units. Synthetic control generates a response metric for treated units relative to a no-action alternative based on prior relationships between treated and unexposed groups. Using simulations and a case study involving a large-scale brush-clearing management event, we show how synthetic control can intuitively infer treatment effect sizes from satellite data, even in the presence of confounding noise from climate anomalies, long-term vegetation dynamics, or sensor errors. We find that accuracy depends on the number and quality of potential control units, highlighting the importance of selecting appropriate control populations. Although we consider the synthetic control approach in the context of natural experiments with remote sensing data, we expect the methodology to have wider utility in ecology, particularly for systems with large, complex, and poorly replicated experimental units.

摘要

许多重要的生态现象发生在大的空间尺度上,或者是无计划的,因此不容易适应依赖于随机化、复制和穿插先验控制进行统计比较的分析框架。这种大规模、自然实验的分析在健康和计量经济学文献中很常见,在这些文献中,已经开发出了从大型、嘈杂的观测数据集得出见解的技术。在这里,我们应用该文献中的一种技术,即合成控制法,来评估遥感数据的景观变化。合成控制的基本数据要求包括(1)一组离散的处理和未处理的单位,(2)已知的处理干预日期,以及(3)包括所有单位的治疗前和治疗后结果的时间序列响应数据。合成控制根据处理组和未暴露组之间的先前关系,为处理单位生成相对于无作为替代方案的响应指标。通过模拟和一个涉及大规模刷地管理事件的案例研究,我们展示了即使在存在气候异常、长期植被动态或传感器误差等混杂噪声的情况下,合成控制如何从卫星数据直观地推断出处理效果的大小。我们发现,准确性取决于潜在对照单位的数量和质量,这突出了选择合适的对照群体的重要性。虽然我们在使用遥感数据进行自然实验的背景下考虑了合成控制方法,但我们期望该方法在生态学中具有更广泛的应用,特别是对于具有大、复杂和复制不良的实验单位的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验