School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia.
Curr Biol. 2021 Jan 25;31(2):433-437.e3. doi: 10.1016/j.cub.2020.10.051. Epub 2020 Nov 20.
Larval settlement and metamorphosis are regulated by nitric oxide (NO) signaling in a wide diversity of marine invertebrates. It is thus surprising that, in most invertebrates, the substrate for NO synthesis-arginine-cannot be biosynthesized but instead must be exogenously sourced. In the sponge Amphimedon queenslandica, vertically inherited proteobacterial symbionts in the larva are able to biosynthesize arginine. Here, we test the hypothesis that symbionts provide arginine to the sponge host so that nitric oxide synthase expressed in the larva can produce NO, which regulates metamorphosis, and the byproduct citrulline (Figure 1). First, we find support for an arginine-citrulline biosynthetic loop in this sponge larval holobiont by using stable isotope tracing. In symbionts, incorporated C-citrulline decreases as C-arginine increases, consistent with the use of exogenous citrulline for arginine synthesis. In contrast, C-citrulline accumulates in larvae as C-arginine decreases, demonstrating the uptake of exogenous arginine and its conversion to NO and citrulline. Second, we show that, although Amphimedon larvae can derive arginine directly from seawater, normal settlement and metamorphosis can occur in artificial sea water lacking arginine. Together, these results support holobiont complementation of the arginine-citrulline loop and NO biosynthesis in Amphimedon larvae, suggesting a critical role for bacterial symbionts in the development of this marine sponge. Given that NO regulates settlement and metamorphosis in diverse animal phyla and arginine is procured externally in most animals, we propose that symbionts might play an equally critical regulatory role in this essential life cycle transition in other metazoans.
幼虫的定居和变态受一氧化氮 (NO) 信号调控,这种调控在广泛的海洋无脊椎动物中存在。因此,令人惊讶的是,在大多数无脊椎动物中,NO 合成的底物——精氨酸——不能内源性合成,而必须从外部获得。在海绵 Amphimedon queenslandica 中,幼虫中垂直遗传的变形杆菌共生体能够合成精氨酸。在这里,我们检验了以下假设:共生体向海绵宿主提供精氨酸,以使幼虫中表达的一氧化氮合酶能够产生调节变态的 NO 和副产物瓜氨酸(图 1)。首先,我们通过使用稳定同位素示踪法,在这种海绵幼虫的整体共生体中找到了支持精氨酸-瓜氨酸生物合成循环的证据。在共生体中,随着精氨酸的增加,掺入的 C-瓜氨酸减少,这与外源瓜氨酸用于精氨酸合成一致。相比之下,由于外源精氨酸的摄取及其转化为 NO 和瓜氨酸,C-瓜氨酸在幼虫中积累。其次,我们表明,尽管 Amphimedon 幼虫可以直接从海水中获得精氨酸,但在缺乏精氨酸的人工海水中,正常的定居和变态仍能发生。这些结果共同支持了 Amphimedon 幼虫整体共生体中精氨酸-瓜氨酸循环和 NO 生物合成的互补作用,表明细菌共生体在这种海洋海绵的发育中起着关键作用。鉴于 NO 调节不同动物门的定居和变态,并且在大多数动物中精氨酸是从外部获得的,我们提出共生体可能在其他后生动物的这个基本生命周期转变中发挥同样关键的调节作用。