Suppr超能文献

在催化臭氧化含溴有机污染物的过程中,晶格氧丰富的 MnOOH 纳米棒具有高效的催化活性和溴酸盐生成量最小化:晶格氧导向的氧化还原循环和溴酸盐还原。

Efficient catalytic activity and bromate minimization over lattice oxygen-rich MnOOH nanorods in catalytic ozonation of bromide-containing organic pollutants: Lattice oxygen-directed redox cycle and bromate reduction.

机构信息

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.

出版信息

J Hazard Mater. 2021 May 15;410:124545. doi: 10.1016/j.jhazmat.2020.124545. Epub 2020 Nov 11.

Abstract

The inhibition of bromate formation is a challenge for the application of ozonation in water treatment due to the carcinogenicity and nephrotoxicity of bromate. In this study, the high-mobility lattice oxygen-rich MnOOH nanorods were synthesized successfully and applied for the bromate inhibition during catalytic ozonation in bromide and organic pollutants-containing wastewater treatment. The catalytic ozonation system using lattice oxygen-rich MnOOH nanorods exhibited an excellent performance in bromate control with an inhibition efficiency of 54.1% compared with the sole ozonation process. Furthermore, with the coexistence of 4-nitrophenol, the catalytic ozonation process using lattice oxygen-rich MnOOH nanorods could inhibit the bromate formation and boost the degradation of 4-nitrophenol simultaneously. Based on the experiments of ozone decomposition, surface manganese inactivation and reactive oxygen species detection, the inhibition of bromate could be attributed to the effective decomposition of ozone with generating more ·O and the reduction of bromate into bromide by lattice oxygen-rich MnOOH. The existed surface Mn(IV) on lattice oxygen-rich MnOOH can accept electrons from lattice oxygen and ·O to generate surface transient Mn(II)/Mn(III), in which Mn(II)/Mn(III) can promote the reduction of bromate into bromide during catalytic ozonation. This study provides a promising strategy for the development of bromate-controlling technologies in water treatment.

摘要

由于溴酸盐的致癌性和肾毒性,其生成的抑制是臭氧在水处理中应用的一个挑战。在这项研究中,成功合成了具有高迁移率晶格富氧 MnOOH 纳米棒,并将其应用于含有溴化物和有机污染物的废水处理中催化臭氧化过程中溴酸盐的抑制。与单独的臭氧化过程相比,晶格富氧 MnOOH 纳米棒催化臭氧化系统在控制溴酸盐方面表现出优异的性能,抑制效率达到 54.1%。此外,在 4-硝基苯酚共存的情况下,晶格富氧 MnOOH 纳米棒催化臭氧化过程能够同时抑制溴酸盐的生成和促进 4-硝基苯酚的降解。基于臭氧分解、表面锰失活和活性氧物种检测实验,溴酸盐的抑制归因于晶格富氧 MnOOH 有效分解臭氧生成更多的·O 和将溴酸盐还原成溴化物。晶格富氧 MnOOH 上存在的表面 Mn(IV)可以从晶格氧和·O 接受电子,生成表面瞬态 Mn(II)/Mn(III),其中 Mn(II)/Mn(III)可以在催化臭氧化过程中促进溴酸盐还原成溴化物。本研究为开发水处理中控制溴酸盐技术提供了一种有前景的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验