School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
J Hazard Mater. 2021 May 15;410:124545. doi: 10.1016/j.jhazmat.2020.124545. Epub 2020 Nov 11.
The inhibition of bromate formation is a challenge for the application of ozonation in water treatment due to the carcinogenicity and nephrotoxicity of bromate. In this study, the high-mobility lattice oxygen-rich MnOOH nanorods were synthesized successfully and applied for the bromate inhibition during catalytic ozonation in bromide and organic pollutants-containing wastewater treatment. The catalytic ozonation system using lattice oxygen-rich MnOOH nanorods exhibited an excellent performance in bromate control with an inhibition efficiency of 54.1% compared with the sole ozonation process. Furthermore, with the coexistence of 4-nitrophenol, the catalytic ozonation process using lattice oxygen-rich MnOOH nanorods could inhibit the bromate formation and boost the degradation of 4-nitrophenol simultaneously. Based on the experiments of ozone decomposition, surface manganese inactivation and reactive oxygen species detection, the inhibition of bromate could be attributed to the effective decomposition of ozone with generating more ·O and the reduction of bromate into bromide by lattice oxygen-rich MnOOH. The existed surface Mn(IV) on lattice oxygen-rich MnOOH can accept electrons from lattice oxygen and ·O to generate surface transient Mn(II)/Mn(III), in which Mn(II)/Mn(III) can promote the reduction of bromate into bromide during catalytic ozonation. This study provides a promising strategy for the development of bromate-controlling technologies in water treatment.
由于溴酸盐的致癌性和肾毒性,其生成的抑制是臭氧在水处理中应用的一个挑战。在这项研究中,成功合成了具有高迁移率晶格富氧 MnOOH 纳米棒,并将其应用于含有溴化物和有机污染物的废水处理中催化臭氧化过程中溴酸盐的抑制。与单独的臭氧化过程相比,晶格富氧 MnOOH 纳米棒催化臭氧化系统在控制溴酸盐方面表现出优异的性能,抑制效率达到 54.1%。此外,在 4-硝基苯酚共存的情况下,晶格富氧 MnOOH 纳米棒催化臭氧化过程能够同时抑制溴酸盐的生成和促进 4-硝基苯酚的降解。基于臭氧分解、表面锰失活和活性氧物种检测实验,溴酸盐的抑制归因于晶格富氧 MnOOH 有效分解臭氧生成更多的·O 和将溴酸盐还原成溴化物。晶格富氧 MnOOH 上存在的表面 Mn(IV)可以从晶格氧和·O 接受电子,生成表面瞬态 Mn(II)/Mn(III),其中 Mn(II)/Mn(III)可以在催化臭氧化过程中促进溴酸盐还原成溴化物。本研究为开发水处理中控制溴酸盐技术提供了一种有前景的策略。