Robert Germán, Yagyu Mako, Koizumi Takaya, Naya Loreto, Masclaux-Daubresse Céline, Yoshimoto Kohki
Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France.
Instituto Nacional de Tecnología Agropecuaria (INTA) - Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina.
Plant J. 2021 Feb;105(4):1083-1097. doi: 10.1111/tpj.15091. Epub 2020 Dec 22.
Plant responses to NH stress are complex, and multiple mechanisms underlying NH sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH toxicity conditions. When grown under NH stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.
植物对铵胁迫的反应是复杂的,可能涉及植物对铵敏感性和耐受性的多种潜在机制。在这里,我们证明了在铵毒性条件下生长的植物中,巨自噬和微自噬活动受到相反的影响。在铵胁迫条件下生长时,根部的巨自噬活动受损。根细胞在细胞质中积累自噬体,但自噬通量较低,这表明在铵胁迫条件下巨自噬过程的后期步骤受到影响。在这种情况下,我们还发现CCZ1-MON1复合体(液泡运输途径的关键因子)在拟南芥巨自噬途径的后期步骤中发挥作用。相反,在铵胁迫植物根细胞的液泡腔中观察到液泡膜来源的小泡积累,这表明诱导了类似微自噬的过程。从这个意义上说,在铵胁迫植物的根中,在液泡内观察到一些SYP22阳性小泡,但主要是VAMP711阳性小泡。由于巨自噬通量受损,液泡膜降解增加,流向液泡的膜流减少,铵胁迫植物根细胞的液泡结构简化,液泡膜含量降低。综上所述,本研究提供了证据,假定巨自噬过程的后期步骤是拟南芥铵敏感性反应的相关生理机制,并为研究植物微自噬的分子工具提供了见解。