Labeyrie Antoine
College de France and Observatoire de la Côte d'Azur, Collège de France, Paris, France.
Philos Trans A Math Phys Eng Sci. 2021 Jan 11;379(2188):20190570. doi: 10.1098/rsta.2019.0570. Epub 2020 Nov 23.
Following earlier proposals for optical stellar interferometer concepts in space and on the Moon, the improved 'hypertelescope' version capable of direct high-resolution imaging with a high limiting magnitude became tested on Earth, proposed for space, and is now also proposed for the Moon. Many small mirrors can be dilutely arrayed in a lunar impact crater spanning 10-25 km. And a larger version, modified for a flat lunar site and spanning up to several hundred kilometres can be built later if needed for a higher resolution and limiting magnitude. Even larger versions, at the scale of many thousand kilometres, also appear feasible in space at some stage, in the form of a controlled flotilla of mirrors. Among the varied science targets considered with the imaging resolution expected, reaching 100 nano-arcseconds on the Moon, are: (a) the early detection and resolved imaging of Near Earth Objects, and their monitoring for eventual collision avoidance by orbital deflection; (b) multi-pixel imaging of exoplanets as part of the search for exolife by mapping local seasonal spectral variations; (c) the physics of neutron stars and black holes at the galactic centre and in other Active Galactic Nuclei; and (d) distant galaxies of cosmological interest. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.
继早期提出在太空和月球上实施光学恒星干涉仪概念之后,经过改进的能够进行直接高分辨率成像且具有高极限星等的“超级望远镜”版本已在地球上进行测试,并被提议应用于太空,现在也被提议应用于月球。许多小镜子可以稀疏地排列在一个直径10至25公里的月球撞击坑内。如果需要更高的分辨率和极限星等,之后还可以建造一个为平坦月球表面而改进、跨度达数百公里的更大版本。甚至在数千公里规模的更大版本,在某个阶段以受控的镜子舰队形式在太空中似乎也是可行的。在预期成像分辨率可达月球上100纳弧秒的各种科学目标中,包括:(a) 近地天体的早期探测和分辨成像,以及通过轨道偏转对其进行监测以避免最终碰撞;(b) 系外行星的多像素成像,作为通过绘制局部季节光谱变化来寻找外星生命的一部分;(c) 银河系中心及其他活动星系核中的中子星和黑洞的物理学;以及(d) 具有宇宙学意义的遥远星系。本文是“月球天文学:未来几十年”研讨会特刊的一部分。