Suppr超能文献

锂离子电池优质阳极的废料来源:废铁锈的可持续且可扩展升级利用。

Scraps to superior anodes for Li-ion batteries: Sustainable and scalable upgrading of waste rust.

作者信息

Salunkhe Tejaswi Tanaji, Varma Rajender S, Kadam Abhijit Nanaso, Lee Sang-Wha, Lee Young-Chul, Hur Jaehyun, Kim Il Tae

机构信息

Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-do, Seongnam-si 13120, South Korea.

Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.

出版信息

J Hazard Mater. 2021 May 15;410:124571. doi: 10.1016/j.jhazmat.2020.124571. Epub 2020 Nov 12.

Abstract

The abundant iron rust of no value generated from industrial scraps presents environmental problem and burden. Chemical etching and related methods deployed to convert rust into α-FeO nanoparticles, however, have serious shortcomings namely higher chemical consumption and generation of secondary pollution. In an unprecedented illustration, herein the intercalation of ammonium bicarbonate (ABC) as a gaseous bubble template into bulky iron rust is described; formation of ammonium iron carbonate hydroxide hydrate and the reduction of particle size using a simple ball milling method followed by calcination is accomplished. The salient features of ABC, optimization of ratios (rust: ABC), and the ideal calcination temperature were optimized for attaining desirable properties of meso-α-FeO NPs. The electrode obtained at 500 °C delivered a superior reversible capacity of 1,055 mAh g at 1 A g over 100 cycles, which is comparable to the best performance reported for meso-α-FeO NPs. The superior electrochemical performance is ascribed to the porous nature of meso-α-FeO NPs maximizing the surface area, ensuring good charge transfer kinetics and enhanced pseudocapacitive contribution. Thus, we believe that the high-energy ball milling (HEBM) process represents a novel route for the scalable recycling of iron rust scraps for promoting the sustainable production of lithium-ion batteries.

摘要

工业废料产生的大量无价值铁锈带来了环境问题和负担。然而,用于将铁锈转化为α-FeO纳米颗粒的化学蚀刻及相关方法存在严重缺点,即化学消耗量高且会产生二次污染。在此,以前所未有的方式描述了将碳酸氢铵(ABC)作为气态气泡模板插入块状铁锈中;通过简单的球磨法随后进行煅烧,完成了碳酸氢氧化铁铵水合物的形成以及粒径的减小。对ABC的显著特征、比例(铁锈:ABC)的优化以及理想的煅烧温度进行了优化,以获得介观α-FeO纳米颗粒的理想性能。在500℃下获得的电极在1A g的电流密度下经过100次循环后具有1055 mAh g的优异可逆容量,这与报道的介观α-FeO纳米颗粒的最佳性能相当。优异的电化学性能归因于介观α-FeO纳米颗粒的多孔性质,其使表面积最大化,确保了良好的电荷转移动力学并增强了赝电容贡献。因此,我们认为高能球磨(HEBM)工艺代表了一种用于铁锈废料可扩展回收的新途径,以促进锂离子电池的可持续生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验