Salunkhe Tejaswi Tanaji, Varma Rajender S, Kadam Abhijit Nanaso, Lee Sang-Wha, Lee Young-Chul, Hur Jaehyun, Kim Il Tae
Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-do, Seongnam-si 13120, South Korea.
Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
J Hazard Mater. 2021 May 15;410:124571. doi: 10.1016/j.jhazmat.2020.124571. Epub 2020 Nov 12.
The abundant iron rust of no value generated from industrial scraps presents environmental problem and burden. Chemical etching and related methods deployed to convert rust into α-FeO nanoparticles, however, have serious shortcomings namely higher chemical consumption and generation of secondary pollution. In an unprecedented illustration, herein the intercalation of ammonium bicarbonate (ABC) as a gaseous bubble template into bulky iron rust is described; formation of ammonium iron carbonate hydroxide hydrate and the reduction of particle size using a simple ball milling method followed by calcination is accomplished. The salient features of ABC, optimization of ratios (rust: ABC), and the ideal calcination temperature were optimized for attaining desirable properties of meso-α-FeO NPs. The electrode obtained at 500 °C delivered a superior reversible capacity of 1,055 mAh g at 1 A g over 100 cycles, which is comparable to the best performance reported for meso-α-FeO NPs. The superior electrochemical performance is ascribed to the porous nature of meso-α-FeO NPs maximizing the surface area, ensuring good charge transfer kinetics and enhanced pseudocapacitive contribution. Thus, we believe that the high-energy ball milling (HEBM) process represents a novel route for the scalable recycling of iron rust scraps for promoting the sustainable production of lithium-ion batteries.
工业废料产生的大量无价值铁锈带来了环境问题和负担。然而,用于将铁锈转化为α-FeO纳米颗粒的化学蚀刻及相关方法存在严重缺点,即化学消耗量高且会产生二次污染。在此,以前所未有的方式描述了将碳酸氢铵(ABC)作为气态气泡模板插入块状铁锈中;通过简单的球磨法随后进行煅烧,完成了碳酸氢氧化铁铵水合物的形成以及粒径的减小。对ABC的显著特征、比例(铁锈:ABC)的优化以及理想的煅烧温度进行了优化,以获得介观α-FeO纳米颗粒的理想性能。在500℃下获得的电极在1A g的电流密度下经过100次循环后具有1055 mAh g的优异可逆容量,这与报道的介观α-FeO纳米颗粒的最佳性能相当。优异的电化学性能归因于介观α-FeO纳米颗粒的多孔性质,其使表面积最大化,确保了良好的电荷转移动力学并增强了赝电容贡献。因此,我们认为高能球磨(HEBM)工艺代表了一种用于铁锈废料可扩展回收的新途径,以促进锂离子电池的可持续生产。