Suppr超能文献

一种用于差分隐私频繁子图挖掘的两阶段算法。

A Two-Phase Algorithm for Differentially Private Frequent Subgraph Mining.

作者信息

Cheng Xiang, Su Sen, Xu Shengzhi, Xiong Li, Xiao Ke, Zhao Mingxing

机构信息

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing China.

State Grid International Development Co., Ltd., Beijing China.

出版信息

IEEE Trans Knowl Data Eng. 2018 Aug 1;30(8):1411-1425. doi: 10.1109/tkde.2018.2793862. Epub 2018 Jan 15.

Abstract

Mining frequent subgraphs from a collection of input graphs is an important task for exploratory data analysis on graph data. However, if the input graphs contain sensitive information, releasing discovered frequent subgraphs may pose considerable threats to individual privacy. In this paper, we study the problem of frequent subgraph mining (FSM) under the rigorous differential privacy model. We present a two-phase differentially private FSM algorithm, which is referred to as . In , frequent subgraphs are privately identified in the first phase, and the noisy support of each identified frequent subgraph is calculated in the second phase. In particular, to privately identity frequent subgraphs, we propose a frequent subgraph identification approach, which can improve the accuracy of discovered frequent subgraphs through candidate pruning. Moreover, to compute the noisy support of each identified frequent subgraph, we devise a lattice-based noisy support computation approach, which leverages the inclusion relations between the discovered frequent subgraphs to improve the accuracy of the noisy supports. Through formal privacy analysis, we prove that satisfies -differential privacy. Extensive experimental results on real datasets show that can privately find frequent subgraphs while achieving high data utility.

摘要

从输入图集合中挖掘频繁子图是图数据探索性数据分析的一项重要任务。然而,如果输入图包含敏感信息,发布发现的频繁子图可能会对个人隐私构成相当大的威胁。在本文中,我们研究了严格差分隐私模型下的频繁子图挖掘(FSM)问题。我们提出了一种两阶段差分隐私FSM算法,称为 。在 中,频繁子图在第一阶段被私下识别,每个识别出的频繁子图的噪声支持度在第二阶段被计算。具体而言,为了私下识别频繁子图,我们提出了一种频繁子图识别方法,该方法可以通过候选剪枝提高发现的频繁子图的准确性。此外,为了计算每个识别出的频繁子图的噪声支持度,我们设计了一种基于格的噪声支持度计算方法,该方法利用发现的频繁子图之间的包含关系来提高噪声支持度的准确性。通过形式化隐私分析,我们证明 满足 -差分隐私。在真实数据集上的大量实验结果表明, 可以在实现高数据效用的同时私下找到频繁子图。

相似文献

1
A Two-Phase Algorithm for Differentially Private Frequent Subgraph Mining.一种用于差分隐私频繁子图挖掘的两阶段算法。
IEEE Trans Knowl Data Eng. 2018 Aug 1;30(8):1411-1425. doi: 10.1109/tkde.2018.2793862. Epub 2018 Jan 15.
2
Differentially Private Frequent Subgraph Mining.差分隐私频繁子图挖掘
Proc Int Conf Data Eng. 2016 May;2016:229-240. doi: 10.1109/ICDE.2016.7498243. Epub 2016 Jun 23.
3
Differentially Private Frequent Sequence Mining.差分隐私频繁序列挖掘
IEEE Trans Knowl Data Eng. 2016 Nov 1;28(11):2910-2926. doi: 10.1109/tkde.2016.2601106. Epub 2016 Aug 17.
6
Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.耦合图、高效算法与B细胞表位预测
IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):7-16. doi: 10.1109/TCBB.2013.136.
8
Grasping frequent subgraph mining for bioinformatics applications.用于生物信息学应用的频繁子图挖掘
BioData Min. 2018 Sep 3;11:20. doi: 10.1186/s13040-018-0181-9. eCollection 2018.
10
Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph.从生物图谱中特定顶点的富集子图中挖掘信息。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1496-1507. doi: 10.1109/TCBB.2016.2576440. Epub 2016 Jun 7.

引用本文的文献

1

本文引用的文献

1
Differentially Private Frequent Subgraph Mining.差分隐私频繁子图挖掘
Proc Int Conf Data Eng. 2016 May;2016:229-240. doi: 10.1109/ICDE.2016.7498243. Epub 2016 Jun 23.
4
On Differentially Private Frequent Itemset Mining.关于差分隐私频繁项集挖掘
VLDB J. 2012 Nov 1;6(1):25-36. doi: 10.14778/2428536.2428539.
5
A (sub)graph isomorphism algorithm for matching large graphs.一种用于匹配大型图的(子)图同构算法。
IEEE Trans Pattern Anal Mach Intell. 2004 Oct;26(10):1367-72. doi: 10.1109/TPAMI.2004.75.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验