Hofmann K, Romovacek H, Titus G, Ridge K, Raffensperger J A, Finn F M
Protein Research Laboratory, University of Pittsburgh School of Medicine, Pennsylvania 15261.
Biochemistry. 1987 Nov 17;26(23):7384-90. doi: 10.1021/bi00397a028.
Using insulin affinity chromatography, we have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the Mr 125,000 alpha-subunit, the Mr 90,000 beta-subunit, and varying proportions of the Mr 45,000 beta'-subunit. The specific insulin binding of the purified receptor was 25-30 micrograms of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the beta-subunit to beta' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. The rat receptor is particularly subject to destruction. Frequently, we have obtained receptor preparations that did not contain intact beta-subunit. These preparations failed to undergo autophosphorylation, but their insulin binding capacity and binding isotherms were identical with those of receptor containing beta-subunit. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)
利用胰岛素亲和层析法,我们从大鼠肝脏中分离出了高度纯化的胰岛素受体。在还原条件下通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳进行评估时,大鼠肝脏受体包含分子量为125,000的α亚基、分子量为90,000的β亚基以及不同比例的分子量为45,000的β'亚基。纯化受体的特异性胰岛素结合量为每毫克蛋白质25 - 30微克的¹²⁵I - 胰岛素,并且该受体经历胰岛素依赖性自身磷酸化。大鼠肝脏受体和人胎盘受体在几个功能方面存在差异:(1)从四个胰岛素亲和柱上的吸附 - 解吸行为表明,大鼠肝脏受体与固定化配体的结合不太牢固;(2)大鼠肝脏受体的¹²⁵I - 胰岛素结合亲和力低于胎盘受体;(3)用二硫苏糖醇对大鼠肝脏受体进行部分还原会增加其胰岛素结合亲和力,而胎盘受体的结合亲和力不变;(4)在最佳胰岛素浓度下,大鼠肝脏受体自身磷酸化被刺激25 - 50倍,而胎盘受体仅被刺激4 - 6倍。通过蛋白水解将β亚基转化为β'是受体暴露于用于洗脱胰岛素亲和柱的pH 5.0缓冲液时发生的一个主要问题。大鼠受体尤其容易受到破坏。我们经常获得不含完整β亚基的受体制剂。这些制剂无法进行自身磷酸化,但其胰岛素结合能力和结合等温线与含有β亚基的受体相同。蛋白水解抑制剂可大幅减少蛋白水解破坏及随之而来的胰岛素依赖性自身磷酸化的丧失。(摘要截短于250字)