Suppr超能文献

MSB-FCN:用于目标骨架提取的多尺度双向全卷积网络

MSB-FCN: Multi-Scale Bidirectional FCN for Object Skeleton Extraction.

作者信息

Yang Fan, Li Xin, Shen Jianbing

出版信息

IEEE Trans Image Process. 2021;30:2301-2312. doi: 10.1109/TIP.2020.3038483. Epub 2021 Jan 27.

Abstract

The performance of state-of-the-art object skeleton detection (OSD) methods have been greatly boosted by Convolutional Neural Networks (CNNs). However, the most existing CNN-based OSD methods rely on a 'skip-layer' structure where low-level and high-level features are combined to gather multi-level contextual information. Unfortunately, as shallow features tend to be noisy and lack semantic knowledge, they will cause errors and inaccuracy. Therefore, in order to improve the accuracy of object skeleton detection, we propose a novel network architecture, the Multi-Scale Bidirectional Fully Convolutional Network (MSB-FCN), to better gather and enhance multi-scale high-level contextual information. The advantage is that only deep features are used to construct multi-scale feature representations along with a bidirectional structure for better capturing contextual knowledge. This enables the proposed MSB-FCN to learn semantic-level information from different sub-regions. Moreover, we introduce dense connections into the bidirectional structure to ensure that the learning process at each scale can directly encode information from all other scales. An attention pyramid is also integrated into our MSB-FCN to dynamically control information propagation and reduce unreliable features. Extensive experiments on various benchmarks demonstrate that the proposed MSB-FCN achieves significant improvements over the state-of-the-art algorithms.

摘要

卷积神经网络(CNN)极大地提升了当前最先进的目标骨架检测(OSD)方法的性能。然而,现有的大多数基于CNN的OSD方法依赖于一种“跳层”结构,即结合低级和高级特征来收集多级上下文信息。不幸的是,由于浅层特征往往存在噪声且缺乏语义知识,它们会导致错误和不准确。因此,为了提高目标骨架检测的准确性,我们提出了一种新颖的网络架构,即多尺度双向全卷积网络(MSB-FCN),以更好地收集和增强多尺度高级上下文信息。其优势在于仅使用深度特征来构建多尺度特征表示,并采用双向结构以更好地捕捉上下文知识。这使得所提出的MSB-FCN能够从不同子区域学习语义级信息。此外,我们将密集连接引入双向结构,以确保每个尺度的学习过程都能直接编码来自所有其他尺度的信息。还在我们的MSB-FCN中集成了一个注意力金字塔,以动态控制信息传播并减少不可靠特征。在各种基准上进行的大量实验表明,所提出的MSB-FCN相对于当前最先进的算法取得了显著改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验