Suppr超能文献

采用特征化沉淀速度组进行初次沉淀建模。

Primary sedimentation modelling with characterized setting velocity groups.

机构信息

Future Water Institute, New Engineering Building, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.

Future Water Institute, New Engineering Building, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.

出版信息

Water Res. 2021 Feb 1;189:116621. doi: 10.1016/j.watres.2020.116621. Epub 2020 Nov 15.

Abstract

Within a plantwide water and resource recovery facility context, an important requirement for a primary sedimentation unit model is the correct fractionation of the settleable portion (primary sludge - PS) of the raw wastewater total suspended solids (TSS) according to the (i) unbiodegradable particulate organic (UPO), (ii) biodegradable particulate organic (BPO), and (iii) inorganic settleable solid (ISS) components. This paper focuses on improving a current TSS- based primary settling tank (PST) model to account for correct proportions of these three components, with characterized settling velocity groups. The steps taken towards development of the primary sedimentation unit model involved the development of a discrete particle settling model in Microsoft Excel and the utilisation of well characterised municipal wastewater data from previous studies in the discrete particle settling model, to reproduce PS and settled wastewater outputs in settling fractions of UPO, BPO and ISS, via steady state and dynamic calculations and under strict material mass balances. Finally, the insights obtained from discrete particle settling model calculations were implemented in the development of a dynamic University of Cape Town primary sedimentation unit (UCTPSU) model. This dynamic model was rigorously verified to be internally consistent with regards to material mass balances and utilised to simulate plantwide scenarios, under steady state conditions, whereby the impact of incorrect characterisation of TSS components (UPO, BPO and ISS) fractions was evaluated. From these evaluations, it was noted that the incorrect disaggregation of the TSS components of primary sludge can lead to incorrect predictions with regard to parameters such as the settled wastewater composition and the activated sludge system capacity. Thus, the investigation revealed the need to measure key wastewater parameters such as particle settling velocities and the UPO fraction, towards realistically modelling the primary sedimentation unit operations.

摘要

在全厂水和资源回收设施的背景下,对初级沉淀池模型的一个重要要求是根据(i)不可生物降解的颗粒有机物(UPO)、(ii)可生物降解的颗粒有机物(BPO)和(iii)无机可沉淀固体(ISS)成分,正确地对原废水总悬浮固体(TSS)的可沉淀部分(初级污泥-PS)进行分级。本文的重点是改进现有的基于 TSS 的初级沉淀池(PST)模型,以考虑到这些三个成分的正确比例,并具有特征化的沉淀速度组。开发初级沉淀单元模型的步骤包括在 Microsoft Excel 中开发离散颗粒沉淀模型,并利用以前研究中经过充分表征的城市废水数据在离散颗粒沉淀模型中,通过稳态和动态计算,并在严格的物料质量平衡下,复制 PS 和沉淀废水中 UPO、BPO 和 ISS 的沉淀分数。最后,从离散颗粒沉淀模型计算中获得的见解被应用于开发动态开普敦大学初级沉淀单元(UCTPSU)模型。该动态模型经过严格验证,在物料质量平衡方面具有内部一致性,并用于模拟稳态下的全厂情景,评估 TSS 成分(UPO、BPO 和 ISS)分数不正确表征的影响。从这些评估中可以注意到,不正确地分解初级污泥的 TSS 成分可能会导致关于沉淀废水成分和活性污泥系统容量等参数的不正确预测。因此,调查结果表明需要测量关键废水参数,如颗粒沉淀速度和 UPO 分数,以便对初级沉淀单元操作进行现实建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验