Suppr超能文献

多模态影像数据的层次聚类分析可识别帕金森病的脑萎缩和认知模式。

Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson's disease.

机构信息

Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain; Medical Psychology Unit, Department of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.

Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Catalonia, Spain.

出版信息

Parkinsonism Relat Disord. 2021 Jan;82:16-23. doi: 10.1016/j.parkreldis.2020.11.010. Epub 2020 Nov 12.

Abstract

BACKGROUND

Parkinson's disease (PD) is a heterogeneous condition. Cluster analysis based on cortical thickness has been used to define distinct patterns of brain atrophy in PD. However, the potential of other neuroimaging modalities, such as white matter (WM) fractional anisotropy (FA), which has also been demonstrated to be altered in PD, has not been investigated.

OBJECTIVE

We aim to characterize PD subtypes using a multimodal clustering approach based on cortical and subcortical gray matter (GM) volumes and FA measures.

METHODS

We included T1-weighted and diffusion-weighted MRI data from 62 PD patients and 33 healthy controls. We extracted mean GM volumes from 48 cortical and 17 subcortical regions using FSL-VBM, and the mean FA from 20 WM tracts using Tract-Based Spatial Statistics (TBSS). Hierarchical cluster analysis was performed with the PD sample using Ward's linkage method. Whole-brain voxel-wise intergroup comparisons of VBM and TBSS data were also performed using FSL. Neuropsychological and demographic statistical analyses were conducted using IBM SPSS Statistics 25.0.

RESULTS

We identified three PD subtypes, with prominent differences in GM patterns and little WM involvement. One group (n = 15) with widespread cortical and subcortical GM volume and WM FA reductions and pronounced cognitive deficits; a second group (n = 21) with only cortical atrophy limited to frontal and temporal regions and more specific neuropsychological impairment, and a third group (n = 26) without detectable atrophy or cognition impairment.

CONCLUSION

Multimodal MRI data allows classifying PD patients into groups according to GM and WM patterns, which in turn are associated with the cognitive profile.

摘要

背景

帕金森病(PD)是一种异质性疾病。基于皮质厚度的聚类分析已被用于定义 PD 中不同的脑萎缩模式。然而,其他神经影像学模式的潜力,如已被证明在 PD 中发生改变的白质(WM)各向异性分数(FA),尚未得到研究。

目的

我们旨在使用基于皮质和皮质下灰质(GM)体积和 FA 测量的多模态聚类方法来描述 PD 亚型。

方法

我们纳入了 62 名 PD 患者和 33 名健康对照者的 T1 加权和弥散加权 MRI 数据。我们使用 FSL-VBM 从 48 个皮质和 17 个皮质下区域提取平均 GM 体积,使用 Tract-Based Spatial Statistics(TBSS)从 20 个 WM 束提取平均 FA。使用 Ward 链接方法对 PD 样本进行层次聚类分析。还使用 FSL 对 VBM 和 TBSS 数据进行全脑体素间组间比较。使用 IBM SPSS Statistics 25.0 进行神经心理学和人口统计学统计分析。

结果

我们确定了 3 种 PD 亚型,其 GM 模式存在明显差异,WM 受累较少。一个组(n=15)表现为广泛的皮质和皮质下 GM 体积和 WM FA 减少以及明显的认知缺陷;第二个组(n=21)仅表现为局限于额颞叶的皮质萎缩和更特定的神经心理学损害;第三个组(n=26)没有可检测到的萎缩或认知损害。

结论

多模态 MRI 数据允许根据 GM 和 WM 模式对 PD 患者进行分类,而这些模式又与认知特征相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验