Suppr超能文献

采用多孔 Hβ 和 AlMCM-41 催化剂催化裂化芥菜油和蓖麻油制备生物燃料的研究。

A study on biofuel produced by catalytic cracking of mustard and castor oil using porous Hβ and AlMCM-41 catalysts.

机构信息

Department of Chemistry, St. Joseph's Institute of Technology, Chennai 600 119, India.

Department of Chemistry, Anna Adarsh College for Women, Chennai 600 040, India.

出版信息

Sci Total Environ. 2021 Feb 25;757:143781. doi: 10.1016/j.scitotenv.2020.143781. Epub 2020 Nov 16.

Abstract

Biofuel is the only novel solution to the increase in the greenhouse effect and bursting energy demand. The catalytic cracking of non-edible vegetable oils, namely castor and mustard was studied to yield gasoline range (C5-C9) hydrocarbons. Hβ (Microporous; pore size <2 nm) and AlMCM-41 (Mesoporous; pore size 2 nm-50 nm) materials with different Si/Al ratios were used as catalysts for cracking purposes. Characterization of these catalysts was done by X-ray diffraction, Surface area analyzer, nitrogen sorption studies, TPD and inductively coupled plasma techniques. Used mustard oil was cracked over AlMCM-41 catalysts in a fixed bed catalytic cracking unit at optimized reaction condition (400 °C, 4.6 h) obtained over Hβ. The liquid and gaseous products were analyzed using gas chromatograph (Shimadzu GC-9A). Among the mesoporous catalysts AlMCM-41 (27) was able to convert 75% of mustard oil into 48% of bioliquid and 30.4% selectivity towards BG. Pongamia, neem, castor, fresh coconut and used coconut oil was also cracked using AlMCM-41 (27) catalyst. The major products of cracking reactions were Castor Bioliquid (CBL) comprising of bio gasoline (BG), bio kerosene (BK) and bio diesel (BD) with less yield of gaseous products. AlMCM-41 converted 98% of castor oil into 85% of CBL and it was tested with ASTM 6751 standard procedures for its calorific value, viscosity and flash point. The sulphur emission from CBL run engine reached lower index. The results exhibited the commercial utility of the CBL in the near future.

摘要

生物燃料是应对温室效应加剧和能源需求激增的唯一新颖解决方案。研究了非食用植物油(蓖麻油和芥菜油)的催化裂化,以生成汽油范围(C5-C9)的烃类。使用不同 Si/Al 比的 Hβ(微孔;孔径<2nm)和 AlMCM-41(介孔;孔径 2nm-50nm)材料作为催化剂进行裂化。通过 X 射线衍射、比表面积分析仪、氮气吸附研究、TPD 和电感耦合等离子体技术对这些催化剂进行了表征。在优化的反应条件(400°C,4.6h)下,在固定床催化裂化装置中用过的芥菜油在 AlMCM-41 催化剂上裂化,该条件是在 Hβ 上获得的。使用气相色谱仪(岛津 GC-9A)对液体和气体产物进行了分析。在介孔催化剂中,AlMCM-41(27)能够将 75%的芥菜油转化为 48%的生物液体和 30.4%的 BG 选择性。还使用 AlMCM-41(27)催化剂裂化了印楝、麻疯树、蓖麻、新鲜椰子和用过的椰子油。裂化反应的主要产物是由生物汽油(BG)、生物煤油(BK)和生物柴油(BD)组成的蓖麻生物液体(CBL),气体产物的产率较低。AlMCM-41 将 98%的蓖麻油转化为 85%的 CBL,并按照 ASTM 6751 标准程序对其热值、粘度和闪点进行了测试。CBL 运行发动机的硫排放量达到了较低的指标。结果表明,CBL 在不久的将来具有商业实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验