Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
Sci Rep. 2020 Nov 23;10(1):20327. doi: 10.1038/s41598-020-76178-z.
Heavy metal sequestration from industrial wastes and agricultural soils is a long-standing challenge. This is more critical for copper since copper pollution is hazardous both for the environment and for human health. In this study, we applied an integrated approach of Darwin's theory of natural selection with bacterial genetic engineering to generate a biological system with an application for the accumulation of Cu ions. A library of recombinant non-pathogenic Escherichia coli strains was engineered to express seven potential Cu binding peptides encoded by a 'synthetic degenerate' DNA motif and fused to Maltose Binding Protein (MBP). Most of these peptide-MBP chimeras conferred tolerance to high concentrations of copper sulphate, and in certain cases in the order of 160-fold higher than the recognised EC toxic levels of copper in soils. UV-Vis spectroscopic analysis indicated a molar ratio of peptide-copper complexes, while a combination of bioinformatics-based structure modelling, Cu ion docking, and MD simulations of peptide-MBP chimeras corroborated the extent of Cu binding among the peptides. Further, in silico analysis predicted the peptides possessed binding affinity toward a broad range of divalent metal ions. Thus, we report on an efficient, cost-effective, and environment-friendly prototype biological system that is potentially capable of copper bioaccumulation, and which could easily be adapted for the removal of other hazardous heavy metals or the bio-mining of rare metals.
从工业废物和农业土壤中去除重金属是一个长期存在的挑战。对于铜来说,这一点更为关键,因为铜污染对环境和人类健康都有危害。在这项研究中,我们将达尔文自然选择理论与细菌基因工程相结合,构建了一个具有积累 Cu 离子应用潜力的生物系统。我们构建了一个重组非致病性大肠杆菌文库,该文库表达了由“合成简并”DNA 基序编码的七个潜在的 Cu 结合肽,并与麦芽糖结合蛋白(MBP)融合。这些肽-MBP 嵌合体中的大多数都赋予了对高浓度硫酸铜的耐受性,在某些情况下,其耐受性比土壤中公认的 EC 铜毒性水平高出 160 倍。紫外可见光谱分析表明了肽-铜复合物的摩尔比,而基于生物信息学的结构建模、Cu 离子对接以及肽-MBP 嵌合体的 MD 模拟的组合证实了肽之间的 Cu 结合程度。此外,计算机分析预测这些肽对多种二价金属离子具有结合亲和力。因此,我们报告了一个高效、经济实惠且环保的原型生物系统,该系统具有潜在的铜生物积累能力,并且可以很容易地适应其他有害重金属的去除或稀有金属的生物开采。