McGuffin Liam J, Shuid Ahmad N, Kempster Robert, Maghrabi Ali H A, Nealon John O, Salehe Bajuna R, Atkins Jennifer D, Roche Daniel B
School of Biological Sciences, University of Reading, Reading, United Kingdom.
Institut de Biologie Computationnelle, LIRMM, CNRS-UMR 5506, Université de Montpellier, Montpellier, France.
Proteins. 2018 Mar;86 Suppl 1:335-344. doi: 10.1002/prot.25360. Epub 2017 Aug 8.
Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors. Secondly, the ReFOLD method for fixing errors through iterative QA guided refinement. For our automated predictions we developed the IntFOLD4-TS protocol, which integrates the ModFOLD6_rank method for scoring the multiple-template models that were generated using a number of alternative sequence-structure alignments. Overall, our selection of top models and ASE scores using ModFOLD6_rank was an improvement on our previous approaches. In addition, it was worthwhile attempting to repair the detected errors in the top selected models using ReFOLD, which gave us an overall gain in performance. According to the assessors' formula, the IntFOLD4 server ranked 3rd/5th (average Z-score > 0.0/-2.0) on the server only targets, and our manual predictions (McGuffin group) ranked 1st/2nd (average Z-score > -2.0/0.0) compared to all other groups.
我们在蛋白质结构预测关键评估第12轮(CASP12)中的目标是,通过更好的模型选择、准确性自我估计(ASE)分数和优化来改进基于模板的建模(TBM)方法。为实现这一目标,我们开发了两种新的自动化方法,用于对提供的服务器模型进行评分、排名和改进。首先,是ModFOLD6_rank方法,用于改进全局质量评估(QA)、模型排名以及检测局部错误。其次,是ReFOLD方法,用于通过迭代QA引导的优化来修复错误。对于我们的自动化预测,我们开发了IntFOLD4-TS协议,该协议集成了ModFOLD6_rank方法,用于对使用多种替代序列-结构比对生成的多模板模型进行评分。总体而言,我们使用ModFOLD6_rank选择顶级模型和ASE分数比我们之前的方法有所改进。此外,值得尝试使用ReFOLD修复顶级选择模型中检测到的错误,这使我们在性能上总体有所提升。根据评估者的公式,IntFOLD4服务器在仅服务器目标上排名第3/5(平均Z分数>0.0/-2.0),而我们的手动预测(麦古芬团队)与所有其他团队相比排名第1/2(平均Z分数>-2.0/0.0)。