Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
Lamont-Doherty Earth Observatory, Palisades, New York, United States of America.
PLoS One. 2020 Nov 24;15(11):e0241788. doi: 10.1371/journal.pone.0241788. eCollection 2020.
Given that all in-situ analytical techniques have a non-zero beam size, all measured profiles, resulting from diffusion or otherwise, will be artefactually elongated to some degree. Profiles where the total length over which the concentration changes approaches the resolution of the analytical technique likely suffer from serious convolution; the measured profiles may be considerably elongated relative to the true profile. Resolving this effect is non-trivial, except for some specific combinations of profile type and beam geometry. In this study, a versatile method for numerically deconvoluting diffusion profiles acquired using techniques with Gaussian, Lorentzian, (pseudo-)Voigt, circular/elliptical or square/rectangular interaction volumes, is presented. A MATLAB code, including a user-friendly interface (PACE-the Program for Assessing Convolution Effects in diffusion studies), is also provided, and applied to several experimental and natural profiles interpreted as resulting from diffusion, showing various degrees of convolution.
鉴于所有原位分析技术的束斑尺寸都不为零,所有因扩散或其他原因产生的测量谱图都会在某种程度上被人为拉长。在浓度变化的总长度接近分析技术分辨率的情况下,谱图可能会受到严重卷积的影响;与真实谱图相比,测量谱图可能会被显著拉长。除了某些特定的谱图类型和束斑几何形状的组合外,解决这个问题并非易事。在这项研究中,提出了一种通用的方法,用于数值反卷积使用高斯、洛伦兹、(伪)威格特、圆形/椭圆形或正方形/矩形相互作用体积的技术获得的扩散谱图。还提供了一个 MATLAB 代码,包括一个用户友好的界面(PACE-用于评估扩散研究中卷积效应的程序),并应用于几个实验和自然谱图,这些谱图被解释为扩散的结果,显示出不同程度的卷积。