Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany.
Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
J Chem Theory Comput. 2020 Dec 8;16(12):7825-7839. doi: 10.1021/acs.jctc.0c00727. Epub 2020 Nov 24.
Molecular dynamic (MD) simulations are an important tool for studying protein aggregation processes, which play a central role in a number of diseases including Alzheimer's disease. However, MD simulations produce large amounts of data, requiring advanced methods to extract mechanistic insight into the process under study. Transition networks (TNs) provide an elegant method to identify (meta)stable states and the transitions between them from MD simulations. Here, we apply two different methods to generate TNs for protein aggregation: Markov state models (MSMs), which are based on kinetic clustering the state space, and TNs using conformational clustering. The similarities and differences of both methods are elucidated for the aggregation of the fragment Aβ of the Alzheimer's amyloid-β peptide. In general, both methods perform excellently in identifying the main aggregation pathways. The strength of MSMs is that they provide a rather coarse and thus simply to interpret picture of the aggregation process. Conformation-sorting TNs, on the other hand, outperform MSMs in uncovering mechanistic details. We thus recommend to apply both methods to MD data of protein aggregation in order to obtain a complete picture of this process. As part of this work, a Python script called ATRANET for automated TN generation based on a correlation analysis of the descriptors used for conformational sorting is made publicly available.
分子动力学 (MD) 模拟是研究蛋白质聚集过程的重要工具,蛋白质聚集过程在包括阿尔茨海默病在内的许多疾病中起着核心作用。然而,MD 模拟会产生大量数据,需要先进的方法从模拟中提取对研究过程的机制见解。转移网络 (TN) 提供了一种从 MD 模拟中识别 (亚)稳定状态及其之间转换的优雅方法。在这里,我们应用两种不同的方法为蛋白质聚集生成 TN:基于动力学聚类状态空间的马尔可夫状态模型 (MSM),以及基于构象聚类的 TN。对于阿尔茨海默病淀粉样-β肽片段 Aβ的聚集,阐明了这两种方法的相似点和不同点。一般来说,这两种方法在识别主要聚集途径方面都表现出色。MSM 的优势在于它们提供了一个相当粗糙且易于解释的聚集过程的图片。另一方面,构象排序 TN 在揭示机制细节方面优于 MSM。因此,我们建议将这两种方法应用于蛋白质聚集的 MD 数据,以获得该过程的完整图片。作为这项工作的一部分,我们公开了一个名为 ATRANET 的 Python 脚本,用于根据构象排序所用描述符的相关分析自动生成 TN。