Jana Asis K, Keskin Recep, Yaşar Fatih
Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata 700156, India.
Department of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye.
ACS Omega. 2024 Jun 13;9(25):27480-27491. doi: 10.1021/acsomega.4c02643. eCollection 2024 Jun 25.
Increased deposition of amyloid-β (Aβ) plaques in the brain is a frequent pathological feature observed in human immunodeficiency virus (HIV)-positive patients. Emerging evidence indicates that HIV regulatory proteins, particularly the transactivator of transcription (TAT) protein, could interact with Aβ peptide, accelerating the formation of Aβ plaques in the brain and potentially contributing to the onset of Alzheimer's disease in individuals with HIV infection. Nevertheless, the molecular mechanisms underlying these processes remain unclear. In the present study, we have used long all-atom molecular dynamics simulations to probe the direct interactions between the TAT protein and Aβ peptide at the molecular level. Sampling over 28.0 μs, our simulations show that TAT protein induces a shift in the Aβ monomer ensemble toward elongated conformations, exposing aggregation-prone regions on the surface and thereby inducing subsequent aggregation. TAT protein also appears to enhance the stability of preformed Aβ fibrils, while increasing the β-sheet content within these fibrils. Our atomistically detailed simulations qualitatively agree with previous in vitro and in vivo studies. Importantly, our simulations identify key interactions between Aβ and the TAT protein that drive the Aβ aggregation process and stabilize the preformed Aβ aggregates, which are particularly challenging to obtain through current experimental techniques.
在人类免疫缺陷病毒(HIV)阳性患者的大脑中,β-淀粉样蛋白(Aβ)斑块沉积增加是一种常见的病理特征。新出现的证据表明,HIV调节蛋白,特别是转录反式激活因子(TAT)蛋白,可能与Aβ肽相互作用,加速大脑中Aβ斑块的形成,并可能导致HIV感染个体患阿尔茨海默病。然而,这些过程背后的分子机制仍不清楚。在本研究中,我们使用长时间的全原子分子动力学模拟在分子水平上探究TAT蛋白与Aβ肽之间的直接相互作用。通过超过28.0微秒的采样,我们的模拟表明,TAT蛋白诱导Aβ单体集合向拉长构象转变,使表面上易于聚集的区域暴露出来,从而诱导随后的聚集。TAT蛋白似乎还增强了预先形成的Aβ纤维的稳定性,同时增加了这些纤维中的β-折叠含量。我们的原子水平详细模拟在定性上与先前的体外和体内研究一致。重要的是,我们的模拟确定了Aβ与TAT蛋白之间驱动Aβ聚集过程并稳定预先形成的Aβ聚集体的关键相互作用,而通过当前的实验技术获得这些相互作用特别具有挑战性。