Suppr超能文献

乳腺癌患者的抑郁与生存:一项系统评价与荟萃分析方案

Depression and survival of breast cancer patients: A protocol for systematic review and meta-analysis.

作者信息

Zhu Guanghui, Li Juan, Li Jie, Wang Xinmiao, Dai Minghao, Chen Jiayang

机构信息

Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences.

Graduate School, Beijing University of Chinese Medicine.

出版信息

Medicine (Baltimore). 2020 Nov 25;99(48):e23399. doi: 10.1097/MD.0000000000023399.

Abstract

BACKGROUND

Breast cancer is the most common malignancy in women worldwide. Compared with other malignant tumors, breast cancer patients have a higher incidence of depression and other psychiatric symptoms. The purpose of this meta-analysis was to determine the association between long-term survival and depression in patients with breast cancer.

METHODS

This review will include cohort studies only. Multiple databases will be searched by 2 independent reviewers, including PubMed, EMBASE, the Cochrane Library, and PsycINFO. The language of studies should be English and Chinese, published from inception to the September 2020. Two independent reviewers will carry out literature screening, research selection and data extraction. Revman5.3 software will be used to generate funnel map, assess heterogeneity, make the subgroup analysis and complete sensitivity analysis.

RESULTS

This review will summarize the available evidence to determine the association between depression and survival in breast cancer patients.

CONCLUSION

The results of this study will provide reference for the development of comprehensive treatment for breast cancer, and will promote further research.

PROSPERO REGISTRATION NUMBER

CRD42020202200.

摘要

背景

乳腺癌是全球女性中最常见的恶性肿瘤。与其他恶性肿瘤相比,乳腺癌患者抑郁及其他精神症状的发生率更高。本荟萃分析的目的是确定乳腺癌患者长期生存与抑郁之间的关联。

方法

本综述仅纳入队列研究。两名独立 reviewers 将检索多个数据库,包括 PubMed、EMBASE、Cochrane 图书馆和 PsycINFO。研究语言应为英文和中文,发表时间从创刊至 2020 年 9 月。两名独立 reviewers 将进行文献筛选、研究选择和数据提取。将使用 Revman5.3 软件生成漏斗图、评估异质性、进行亚组分析并完成敏感性分析。

结果

本综述将总结现有证据,以确定乳腺癌患者抑郁与生存之间的关联。

结论

本研究结果将为乳腺癌综合治疗的开展提供参考,并将推动进一步研究。

PROSPERO 注册号:CRD42020202200。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7718/7710216/a5667ec02d42/medi-99-e23399-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验