Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
J Cachexia Sarcopenia Muscle. 2021 Feb;12(1):192-208. doi: 10.1002/jcsm.12650. Epub 2020 Nov 25.
Transforming growth factor-β-activated kinase 1 (TAK1) plays a key role in regulating fibroblast and myoblast proliferation and differentiation. However, the TAK1 changes associated with Duchenne muscular dystrophy (DMD) are poorly understood, and it remains unclear how TAK1 regulation could be exploited to aid the treatment of this disease.
Muscle biopsies were obtained from control donors or DMD patients for diagnosis (n = 6 per group, male, 2-3 years, respectively). Protein expression of phosphorylated TAK1 was measured by western blot and immunofluorescence analysis. In vivo overexpression of TAK1 was performed in skeletal muscle to assess whether TAK1 is sufficient to induce or aggravate atrophy and fibrosis. To explore whether TAK1 inhibition protects against muscle damage, mdx (loss of dystrophin) mice were treated with adeno-associated virus (AAV)-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). Serum analysis, skeletal muscle performance and histology, muscle contractile function, and gene and protein expression were performed.
We found that TAK1 was activated in the dystrophic muscles of DMD patients (n = 6, +72.2%, P < 0.001), resulting in fibrosis ( +65.9% for fibronectin expression, P < 0.001) and loss of muscle fibres (-32.5%, P < 0.01). Moreover, TAK1 was activated by interleukin-1β, tumour necrosis factor-α, and transforming growth factor-β1 (P < 0.01). Overexpression of TAK1 by AAV vectors further aggravated fibrosis (n = 8, +39.6% for hydroxyproline content, P < 0.01) and exacerbated muscle wasting (-31.6%, P < 0.01) in mdx mice; however, these effects were reversed in mdx mice by treatment with AAV-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). The molecular mechanism underlying these effects may be related to the prevention of TAK1-mediated transdifferentiation of myoblasts into fibroblasts, thereby reducing fibrosis and increasing myoblast differentiation.
Our findings show that TAK1 activation exacerbated fibrosis and muscle degeneration and that TAK1 inhibition can improve whole-body muscle quality and the function of dystrophic skeletal muscle. Thus, TAK1 inhibition may constitute a novel therapy for DMD.
转化生长因子-β激活激酶 1(TAK1)在调节成纤维细胞和肌母细胞增殖和分化方面发挥着关键作用。然而,与杜氏肌营养不良症(DMD)相关的 TAK1 变化尚不清楚,也不清楚如何利用 TAK1 调节来帮助治疗这种疾病。
从对照组供体或 DMD 患者中获取肌肉活检进行诊断(每组 6 例,男性,分别为 2-3 岁)。通过 Western blot 和免疫荧光分析测量磷酸化 TAK1 的蛋白表达。在骨骼肌中进行 TAK1 的过表达以评估 TAK1 是否足以诱导或加重萎缩和纤维化。为了探讨 TAK1 抑制是否能保护肌肉免受损伤,用腺相关病毒(AAV)-短发夹 TAK1(shTAK1)或 NG25(TAK1 抑制剂)处理 mdx(肌营养不良蛋白缺失)小鼠。进行血清分析、骨骼肌性能和组织学、肌肉收缩功能以及基因和蛋白表达。
我们发现 TAK1 在 DMD 患者的肌肉中被激活(n=6,+72.2%,P<0.001),导致纤维化(纤维连接蛋白表达增加+65.9%,P<0.001)和肌肉纤维丢失(-32.5%,P<0.01)。此外,白细胞介素-1β、肿瘤坏死因子-α和转化生长因子-β1 激活了 TAK1(P<0.01)。AAV 载体过表达 TAK1 进一步加重了 mdx 小鼠的纤维化(羟脯氨酸含量增加+39.6%,n=8,P<0.01)和肌肉萎缩(-31.6%,P<0.01);然而,在用 AAV-short hairpin TAK1(shTAK1)或 NG25(TAK1 抑制剂)治疗后,这些效应在 mdx 小鼠中得到了逆转。这些影响的分子机制可能与防止 TAK1 介导的成肌细胞向成纤维细胞的转分化有关,从而减少纤维化并增加成肌细胞分化。
我们的研究结果表明,TAK1 的激活加剧了纤维化和肌肉变性,而 TAK1 抑制可以改善全身肌肉质量和 DMD 骨骼肌的功能。因此,TAK1 抑制可能成为治疗 DMD 的一种新疗法。