Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland.
Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, Université de Lille, Wimereux, France.
Elife. 2020 Nov 25;9:e62014. doi: 10.7554/eLife.62014.
Zooplankton live in dynamic environments where turbulence may challenge their limited swimming abilities. How this interferes with fundamental behavioral processes remains elusive. We reconstruct simultaneously the trajectories of flow tracers and calanoid copepods and we quantify their ability to find mates when ambient flow imposes physical constrains on their motion and impairs their olfactory orientation. We show that copepods achieve high encounter rates in turbulence due to the contribution of advection and vigorous swimming. Males further convert encounters within the perception radius to contacts and then to mating via directed motion toward nearby organisms within the short time frame of the encounter. Inertial effects do not result in preferential concentration, reducing the geometric collision kernel to the clearance rate, which we model accurately by superposing turbulent velocity and organism motion. This behavioral and physical coupling mechanism may account for the ability of copepods to reproduce in turbulent environments.
浮游动物生活在动态环境中,其中的湍流可能会挑战它们有限的游泳能力。这种干扰是如何影响基本的行为过程的,目前还不得而知。我们同时重建了示踪剂流和哲水蚤的轨迹,并量化了它们在环境流对其运动施加物理限制并损害其嗅觉定向时寻找配偶的能力。我们表明,由于平流和剧烈游泳的贡献,桡足类动物在湍流中能够实现高遭遇率。雄性动物通过向附近生物体的定向运动,将感知半径内的遭遇进一步转化为接触,然后转化为交配,而这一过程发生在遭遇的短暂时间框架内。惯性效应不会导致优先集中,从而将几何碰撞核减小为清除率,我们通过将湍流速度和生物体运动叠加来准确地模拟这一过程。这种行为和物理耦合机制可能解释了桡足类动物在湍流环境中繁殖的能力。