Raja Soniya S, Cheng Chang-Wei, Gwo Shangjr
Institute of NanoEngineering and MicroSystems, National Tsing-Hua University, Hsinchu 30013, Taiwan.
Nanoscale. 2020 Dec 8;12(46):23809-23816. doi: 10.1039/d0nr06603f.
Aluminum is a plasmonic material well known for its excellent stability, complementary metal-oxide-semiconductor compatibility and wide availability as compared to popular plasmonic materials such as gold and silver. Aluminum can support surface plasmon resonances in a broad spectral range, including the deep ultra-violet, a regime where no other plasmonic materials can work. However, conventional aluminum films suffer from high losses in the visible region and low fidelity and reproducibility in nanofabrication, making aluminum plasmonics non-ideal for applications. Herein, we report the experimental results of consistent surface plasmon propagation length measurements for epitaxially grown aluminum and silver films (epifilms), using three different methods (white light interferometry, laser scattering and spectroscopic ellipsometry) in the full visible spectrum. In order to avoid losses caused by inferior material quality, we used single-crystalline aluminum and silver films for direct comparison. We found that, on directly comparing with the silver epifilm, the aluminum epifilm possesses reasonably long plasmon propagation lengths in the full visible range and outperforms silver in the deep blue region. These results illustrate the great potential of epitaxial aluminum films for visible-spectrum plasmonic applications, resulting from their superior crystallinity and excellent surface and interface properties.
与金和银等常见的等离子体材料相比,铝是一种以其出色的稳定性、互补金属氧化物半导体兼容性和广泛可用性而闻名的等离子体材料。铝可以在包括深紫外在内的宽光谱范围内支持表面等离子体共振,而在该波段没有其他等离子体材料能够发挥作用。然而,传统铝膜在可见光区域存在高损耗,并且在纳米加工中保真度和可重复性较低,这使得铝等离子体在应用中并不理想。在此,我们报告了在整个可见光谱范围内使用三种不同方法(白光干涉测量法、激光散射和光谱椭偏测量法)对外延生长的铝和银薄膜(外延膜)进行一致的表面等离子体传播长度测量的实验结果。为了避免因材料质量不佳而导致的损耗,我们使用单晶铝和银薄膜进行直接比较。我们发现,与银外延膜直接比较时,铝外延膜在整个可见光范围内具有相当长的等离子体传播长度,并且在深蓝色区域表现优于银。这些结果说明了外延铝膜在可见光谱等离子体应用中的巨大潜力,这源于其卓越的结晶度以及出色的表面和界面特性。