Suppr超能文献

头颈部鳞状细胞癌治疗反应的体外培养模型。

Ex Vivo Culture Models to Indicate Therapy Response in Head and Neck Squamous Cell Carcinoma.

机构信息

Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.

Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.

出版信息

Cells. 2020 Nov 23;9(11):2527. doi: 10.3390/cells9112527.

Abstract

Head and neck squamous cell carcinoma (HNSCC) is characterized by a poor 5 year survival and varying response rates to both standard-of-care and new treatments. Despite advances in medicine and treatment methods, mortality rates have hardly decreased in recent decades. Reliable patient-derived tumor models offer the chance to predict therapy response in a personalized setting, thereby improving treatment efficacy by identifying the most appropriate treatment regimen for each patient. Furthermore, ex vivo tumor models enable testing of novel therapies before introduction in clinical practice. A literature search was performed to identify relevant literature describing three-dimensional ex vivo culture models of HNSCC to examine sensitivity to chemotherapy, radiotherapy, immunotherapy and targeted therapy. We provide a comprehensive overview of the currently used three-dimensional ex vivo culture models for HNSCC with their advantages and limitations, including culture success percentage and comparison to the original tumor. Furthermore, we evaluate the potential of these models to predict patient therapy response.

摘要

头颈部鳞状细胞癌(HNSCC)的特点是 5 年生存率低,对标准治疗和新治疗的反应率也各不相同。尽管医学和治疗方法取得了进步,但近几十年来死亡率几乎没有下降。可靠的患者来源肿瘤模型提供了在个性化环境中预测治疗反应的机会,从而通过为每个患者确定最合适的治疗方案来提高治疗效果。此外,体外肿瘤模型可以在引入临床实践之前测试新的治疗方法。进行了文献检索,以确定描述 HNSCC 三维体外培养模型以检查对化疗、放疗、免疫疗法和靶向疗法敏感性的相关文献。我们全面概述了目前用于 HNSCC 的三维体外培养模型及其优缺点,包括培养成功率以及与原始肿瘤的比较。此外,我们评估了这些模型预测患者治疗反应的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd2/7700693/861cd93cfeac/cells-09-02527-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验