Li Yang, Lin Chongjia, Wu Zuoxu, Chen Zhongying, Chi Cheng, Cao Feng, Mei Deqing, Yan He, Tso Chi Yan, Chao Christopher Y H, Huang Baoling
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
Adv Mater. 2021 Jan;33(1):e2005074. doi: 10.1002/adma.202005074. Epub 2020 Nov 25.
Low-cost and large-area solar-thermal absorbers with superior spectral selectivity and excellent thermal stability are vital for efficient and large-scale solar-thermal conversion applications, such as space heating, desalination, ice mitigation, photothermal catalysis, and concentrating solar power. Few state-of-the-art selective absorbers are qualified for both low- (<200 °C) and high-temperature (>600 °C) applications due to insufficient spectral selectivity or thermal stability over a wide temperature range. Here, a high-performance plasmonic metamaterial selective absorber is developed by facile solution-based processes via assembling an ultrathin (≈120 nm) titanium nitride (TiN) nanoparticle film on a TiN mirror. Enabled by the synergetic in-plane plasmon and out-of-plane Fabry-Pérot resonances, the all-ceramic plasmonic metamaterial simultaneously achieves high, full-spectrum solar absorption (95%), low mid-IR emission (3% at 100 °C), and excellent stability over a temperature range of 100-727 °C, even outperforming most vacuum-deposited absorbers at their specific operating temperatures. The competitive performance of the solution-processed absorber is accompanied by a significant cost reduction compared with vacuum-deposited absorbers. All these merits render it a cost-effective, universal solution to offering high efficiency (89-93%) for both low- and high-temperature solar-thermal applications.
具有卓越光谱选择性和出色热稳定性的低成本大面积太阳能热吸收器对于高效大规模太阳能热转换应用至关重要,如空间供热、海水淡化、除冰、光热催化和聚光太阳能发电。由于在宽温度范围内光谱选择性或热稳定性不足,很少有先进的选择性吸收器能同时满足低温(<200°C)和高温(>600°C)应用的要求。在此,通过基于溶液的简便工艺,在氮化钛(TiN)镜面上组装超薄(≈120nm)氮化钛纳米颗粒膜,开发出一种高性能等离子体超材料选择性吸收器。借助面内等离子体和面外法布里-珀罗共振的协同作用,这种全陶瓷等离子体超材料同时实现了高的全光谱太阳能吸收(95%)、低的中红外发射(100°C时为3%)以及在100 - 727°C温度范围内的出色稳定性,甚至在其特定工作温度下优于大多数真空沉积吸收器。与真空沉积吸收器相比,溶液处理吸收器具有竞争力的性能伴随着成本的显著降低。所有这些优点使其成为一种经济高效的通用解决方案,可为低温和高温太阳能热应用提供高效率(89 - 93%)。