Suppr超能文献

用于高效太阳能收集的椭圆形纳米天线阵列等离子体超表面

An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.

作者信息

Ashrafi-Peyman Zahra, Jafargholi Amir, Moshfegh Alireza Z

机构信息

Department of Physics, Sharif University of Technology, Tehran 11555-9161, Iran.

Laboratory of Wave Engineering, School of Electrical Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Nanoscale. 2024 Feb 15;16(7):3591-3605. doi: 10.1039/d3nr05657k.

Abstract

Plasmonic metasurfaces with subwavelength nanoantenna arrays have attracted much attention for their ability to control and manage optical properties. Solar absorbers are potential candidates for effectively converting photons into heat and electricity. This study introduces a novel ultrathin metasurface solar absorber employing elliptical-shaped nanoantenna arrays. We theoretically and numerically demonstrate a near-perfect broadband absorber with over 90% absorption efficiency in a wide range of wavelengths of 300-2500 nm, using finite element (FEM) and finite-difference time-domain (FDTD) methods. The proposed nanostructure configuration enhances light absorption by exciting localized surface plasmon resonances (LSPRs) between elliptical-shaped nanoantenna gaps at many wavelengths, maintaining stability at wide incident angles and insensitivity to light polarization. Compared to other state-of-the-art absorbers with a thickness of less than 300 nm, the designed nanostructure with 260 nm thickness achieves over 90% optical absorption across a broad range of wavelengths of 300-1116 nm in air (or vacuum) environments and performs effectively under water conditions for solar energy harvesting in a range of wavelengths of 300-1436 nm, and therefore can serve as a solar evaporator. Combining refractory plasmonic titanium nitride (TiN) and semiconductor gallium nitride (GaN) nanostructures holds great potential for efficient optoelectronic and photocatalytic applications, especially in harsh and high-temperature environments like thermophotovoltaic systems. The TiN-based metasurface absorber, with its ultrathin nanostructure and suitable spectral absorption in ultraviolet-visible-infrared spectra, offers scalability and cost-effectiveness. The findings in this work will deepen our understanding of LSPRs and pave a novel path for efficient solar energy conversion.

摘要

具有亚波长纳米天线阵列的等离激元超表面因其控制和管理光学特性的能力而备受关注。太阳能吸收器是将光子有效转化为热和电的潜在候选者。本研究介绍了一种采用椭圆形纳米天线阵列的新型超薄超表面太阳能吸收器。我们使用有限元(FEM)和时域有限差分(FDTD)方法,从理论和数值上证明了一种近乎完美的宽带吸收器,在300 - 2500 nm的宽波长范围内具有超过90%的吸收效率。所提出的纳米结构配置通过在许多波长下激发椭圆形纳米天线间隙之间的局域表面等离激元共振(LSPR)来增强光吸收,在宽入射角下保持稳定性且对光偏振不敏感。与其他厚度小于300 nm的现有先进吸收器相比,设计的厚度为260 nm的纳米结构在空气(或真空)环境中300 - 1116 nm的宽波长范围内实现了超过90%的光吸收,并且在水下条件下在300 - 1436 nm的波长范围内有效地用于太阳能收集,因此可作为太阳能蒸发器。结合难熔等离激元氮化钛(TiN)和半导体氮化镓(GaN)纳米结构在高效光电子和光催化应用中具有巨大潜力,特别是在诸如热光伏系统等恶劣和高温环境中。基于TiN的超表面吸收器具有超薄纳米结构以及在紫外 - 可见 - 红外光谱中合适的光谱吸收,具有可扩展性和成本效益。这项工作中的发现将加深我们对LSPR的理解,并为高效太阳能转换开辟一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验