Suppr超能文献

补偿生理运动可实现体内高产量全细胞记录。

Compensation of physiological motion enables high-yield whole-cell recording in vivo.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

J Neurosci Methods. 2021 Jan 15;348:109008. doi: 10.1016/j.jneumeth.2020.109008. Epub 2020 Nov 23.

Abstract

BACKGROUND

Whole-cell patch-clamp recording in vivo is the gold-standard method for measuring subthreshold electrophysiology from single cells during behavioural tasks, sensory stimulations, and optogenetic manipulation. However, these recordings require a tight, gigaohm resistance, seal between a glass pipette electrode's aperture and a cell's membrane. These seals are difficult to form, especially in vivo, in part because of a strong dependence on the distance between the pipette aperture and cell membrane.

NEW METHOD

We elucidate and utilize this dependency to develop an autonomous method for placement and synchronization of pipette's tip aperture to the membrane of a nearby, moving neuron, which enables high-yield seal formation and subsequent recordings deep in the brain of the living mouse.

RESULTS

This synchronization procedure nearly doubles the reported gigaseal yield in the thalamus (>3 mm below the pial surface) from 26 % (n = 17/64) to 48 % (n = 32/66). Whole-cell recording yield improved from 10 % (n = 9/88) to 24 % (n = 18/76) when motion compensation was used during the gigaseal formation. As an example of its application, we utilized this system to investigate the role of the sensory environment and ventral posterior medial region (VPM) projection synchrony on intracellular dynamics in the barrel cortex.

COMPARISON WITH EXISTING METHOD(S): Current methods of in vivo whole-cell patch clamping do not synchronize the position of the pipette to motion of the cell.

CONCLUSIONS

This method results in substantially greater subcortical whole-cell recording yield than previously reported and thus makes pan-brain whole-cell electrophysiology practical in the living mouse brain.

摘要

背景

全细胞膜片钳记录技术是在行为任务、感觉刺激和光遗传学操作过程中测量单个细胞亚阈电生理特性的金标准方法。然而,这些记录需要在玻璃微电极尖端和细胞膜之间形成一个紧密的千兆欧姆密封。这些密封很难形成,尤其是在体内,部分原因是它们强烈依赖于玻璃微电极尖端和细胞膜之间的距离。

新方法

我们阐明并利用了这种依赖性,开发了一种自主的方法,用于将玻璃微电极尖端的位置和同步放置到附近运动神经元的细胞膜上,从而实现高产量的密封形成,并随后在活体小鼠的大脑深处进行记录。

结果

这种同步程序将丘脑中的高阻封接(距软脑膜表面下>3 毫米)的报告产量从 26%(n=17/64)提高到了 48%(n=32/66)。当在高阻封接形成过程中使用运动补偿时,全细胞膜片钳记录的产量从 10%(n=9/88)提高到了 24%(n=18/76)。作为其应用的一个例子,我们利用这个系统研究了感觉环境和腹后内侧核(VPM)投射同步对桶状皮层细胞内动力学的作用。

与现有方法的比较

目前的活体全细胞膜片钳记录方法没有将微电极的位置与细胞的运动同步。

结论

与之前报道的方法相比,这种方法大大提高了皮层下全细胞膜片钳记录的产量,从而使得活体小鼠大脑中的全脑电生理学成为可能。

相似文献

1
Compensation of physiological motion enables high-yield whole-cell recording in vivo.补偿生理运动可实现体内高产量全细胞记录。
J Neurosci Methods. 2021 Jan 15;348:109008. doi: 10.1016/j.jneumeth.2020.109008. Epub 2020 Nov 23.
10
In Vivo Whole-Cell Recording from the Mouse Brain.在体全细胞记录小鼠大脑。
Methods Mol Biol. 2024;2794:245-257. doi: 10.1007/978-1-0716-3810-1_20.

本文引用的文献

9
3D active stabilization system with sub-micrometer resolution.具有亚微米分辨率的 3D 主动稳定系统。
PLoS One. 2012;7(8):e42733. doi: 10.1371/journal.pone.0042733. Epub 2012 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验