Suppr超能文献

补偿生理运动可实现体内高产量全细胞记录。

Compensation of physiological motion enables high-yield whole-cell recording in vivo.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

J Neurosci Methods. 2021 Jan 15;348:109008. doi: 10.1016/j.jneumeth.2020.109008. Epub 2020 Nov 23.

Abstract

BACKGROUND

Whole-cell patch-clamp recording in vivo is the gold-standard method for measuring subthreshold electrophysiology from single cells during behavioural tasks, sensory stimulations, and optogenetic manipulation. However, these recordings require a tight, gigaohm resistance, seal between a glass pipette electrode's aperture and a cell's membrane. These seals are difficult to form, especially in vivo, in part because of a strong dependence on the distance between the pipette aperture and cell membrane.

NEW METHOD

We elucidate and utilize this dependency to develop an autonomous method for placement and synchronization of pipette's tip aperture to the membrane of a nearby, moving neuron, which enables high-yield seal formation and subsequent recordings deep in the brain of the living mouse.

RESULTS

This synchronization procedure nearly doubles the reported gigaseal yield in the thalamus (>3 mm below the pial surface) from 26 % (n = 17/64) to 48 % (n = 32/66). Whole-cell recording yield improved from 10 % (n = 9/88) to 24 % (n = 18/76) when motion compensation was used during the gigaseal formation. As an example of its application, we utilized this system to investigate the role of the sensory environment and ventral posterior medial region (VPM) projection synchrony on intracellular dynamics in the barrel cortex.

COMPARISON WITH EXISTING METHOD(S): Current methods of in vivo whole-cell patch clamping do not synchronize the position of the pipette to motion of the cell.

CONCLUSIONS

This method results in substantially greater subcortical whole-cell recording yield than previously reported and thus makes pan-brain whole-cell electrophysiology practical in the living mouse brain.

摘要

背景

全细胞膜片钳记录技术是在行为任务、感觉刺激和光遗传学操作过程中测量单个细胞亚阈电生理特性的金标准方法。然而,这些记录需要在玻璃微电极尖端和细胞膜之间形成一个紧密的千兆欧姆密封。这些密封很难形成,尤其是在体内,部分原因是它们强烈依赖于玻璃微电极尖端和细胞膜之间的距离。

新方法

我们阐明并利用了这种依赖性,开发了一种自主的方法,用于将玻璃微电极尖端的位置和同步放置到附近运动神经元的细胞膜上,从而实现高产量的密封形成,并随后在活体小鼠的大脑深处进行记录。

结果

这种同步程序将丘脑中的高阻封接(距软脑膜表面下>3 毫米)的报告产量从 26%(n=17/64)提高到了 48%(n=32/66)。当在高阻封接形成过程中使用运动补偿时,全细胞膜片钳记录的产量从 10%(n=9/88)提高到了 24%(n=18/76)。作为其应用的一个例子,我们利用这个系统研究了感觉环境和腹后内侧核(VPM)投射同步对桶状皮层细胞内动力学的作用。

与现有方法的比较

目前的活体全细胞膜片钳记录方法没有将微电极的位置与细胞的运动同步。

结论

与之前报道的方法相比,这种方法大大提高了皮层下全细胞膜片钳记录的产量,从而使得活体小鼠大脑中的全脑电生理学成为可能。

相似文献

1
Compensation of physiological motion enables high-yield whole-cell recording in vivo.
J Neurosci Methods. 2021 Jan 15;348:109008. doi: 10.1016/j.jneumeth.2020.109008. Epub 2020 Nov 23.
2
Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo.
J Neurophysiol. 2017 Aug 1;118(2):1141-1150. doi: 10.1152/jn.00117.2017. Epub 2017 Jun 7.
3
Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex.
J Neurophysiol. 2019 Jun 1;121(6):2341-2357. doi: 10.1152/jn.00738.2018. Epub 2019 Apr 10.
4
Optimal Pipette Resistance, Seal Resistance, and Zero-Current Membrane Potential for Loose Patch or Breakthrough Whole-Cell Recording .
Front Neural Circuits. 2020 Jun 30;14:34. doi: 10.3389/fncir.2020.00034. eCollection 2020.
5
Integration of autopatching with automated pipette and cell detection in vitro.
J Neurophysiol. 2016 Oct 1;116(4):1564-1578. doi: 10.1152/jn.00386.2016. Epub 2016 Jul 6.
6
Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.
Pflugers Arch. 1998 Nov;436(6):999-1013. doi: 10.1007/s004240050735.
7
Culturing and electrophysiology of cells on NRCC patch-clamp chips.
J Vis Exp. 2012 Feb 7(60):3288. doi: 10.3791/3288.
8
Machine Learning-Based Pipette Positional Correction for Automatic Patch Clamp .
eNeuro. 2021 Jul 26;8(4). doi: 10.1523/ENEURO.0051-21.2021. Print 2021 Jul-Aug.
9
A device for automated control of pipette internal pressure for patch-clamp recording.
J Neurosci Methods. 2003 Feb 15;123(1):109-15. doi: 10.1016/s0165-0270(02)00342-4.
10
In Vivo Whole-Cell Recording from the Mouse Brain.
Methods Mol Biol. 2024;2794:245-257. doi: 10.1007/978-1-0716-3810-1_20.

引用本文的文献

2
Rapid Cortical Adaptation and the Role of Thalamic Synchrony during Wakefulness.
J Neurosci. 2021 Jun 23;41(25):5421-5439. doi: 10.1523/JNEUROSCI.3018-20.2021. Epub 2021 May 13.

本文引用的文献

1
Recruitment of GABAergic Interneurons in the Barrel Cortex during Active Tactile Behavior.
Neuron. 2019 Oct 23;104(2):412-427.e4. doi: 10.1016/j.neuron.2019.07.027. Epub 2019 Aug 26.
2
PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices.
J Neural Eng. 2019 Aug;16(4):046003. doi: 10.1088/1741-2552/ab1834. Epub 2019 Apr 10.
3
Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo.
J Neurophysiol. 2017 Aug 1;118(2):1141-1150. doi: 10.1152/jn.00117.2017. Epub 2017 Jun 7.
4
Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse.
Neurophotonics. 2017 Jul;4(3):031212. doi: 10.1117/1.NPh.4.3.031212. Epub 2017 May 4.
5
Motion characterization scheme to minimize motion artifacts in intravital microscopy.
J Biomed Opt. 2017 Mar 1;22(3):36005. doi: 10.1117/1.JBO.22.3.036005.
6
Cleaning patch-clamp pipettes for immediate reuse.
Sci Rep. 2016 Oct 11;6:35001. doi: 10.1038/srep35001.
7
8
Assembly and operation of the autopatcher for automated intracellular neural recording in vivo.
Nat Protoc. 2016 Apr;11(4):634-54. doi: 10.1038/nprot.2016.007. Epub 2016 Mar 3.
9
3D active stabilization system with sub-micrometer resolution.
PLoS One. 2012;7(8):e42733. doi: 10.1371/journal.pone.0042733. Epub 2012 Aug 10.
10
Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
Nat Methods. 2012 Jun;9(6):585-7. doi: 10.1038/nmeth.1993. Epub 2012 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验