Suppr超能文献

听觉对声音时间的选择性是如何产生的:GABA 能抑制在塑造中脑神经元对时间间隔选择性的兴奋中的多样作用。

How auditory selectivity for sound timing arises: The diverse roles of GABAergic inhibition in shaping the excitation to interval-selective midbrain neurons.

机构信息

School of Biological Sciences, University of Utah, United States.

School of Biological Sciences, University of Utah, United States.

出版信息

Prog Neurobiol. 2021 Apr;199:101962. doi: 10.1016/j.pneurobio.2020.101962. Epub 2020 Nov 23.

Abstract

Across sensory systems, temporal frequency information is progressively transformed along ascending central pathways. Despite considerable effort to elucidate the mechanistic basis of these transformations, they remain poorly understood. Here we used a novel constellation of approaches, including whole-cell recordings and focal pharmacological manipulation, in vivo, and new computational algorithms that identify conductances resulting from excitation, inhibition and active membrane properties, to elucidate the mechanisms underlying the selectivity of midbrain auditory neurons for long temporal intervals. Surprisingly, we found that stimulus-driven excitation can be increased and its selectivity decreased following attenuation of inhibition with gabazine or intracellular delivery of fluoride. We propose that this nonlinear interaction is due to shunting inhibition. The rate-dependence of this inhibition results in the illusion that excitation to a cell shows greater temporal selectivity than is actually the case. We also show that rate-dependent depression of excitation, an important component of long-interval selectivity, can be decreased after attenuating inhibition. These novel findings indicate that nonlinear shunting inhibition plays a key role in shaping the amplitude and interval selectivity of excitation. Our findings provide a major advance in understanding how the brain decodes intervals and may explain paradoxical temporal selectivity of excitation to midbrain neurons reported previously.

摘要

跨感觉系统,时间频率信息沿着上行中枢通路逐渐转换。尽管人们付出了相当大的努力来阐明这些转换的机制基础,但它们仍然知之甚少。在这里,我们使用了一系列新的方法,包括全细胞记录和体内焦点药物处理,以及新的计算算法,这些算法可以识别兴奋、抑制和主动膜特性产生的电导,以阐明中脑听觉神经元对长时程的选择性的机制。令人惊讶的是,我们发现,用加巴喷丁或细胞内氟化物处理可以减弱抑制,从而增加刺激驱动的兴奋,并降低其选择性。我们提出,这种非线性相互作用是由于分流抑制。这种抑制的速率依赖性导致一种错觉,即细胞的兴奋表现出比实际情况更大的时间选择性。我们还表明,在减弱抑制后,长时程选择性的重要组成部分——兴奋的速率依赖性抑制可以降低。这些新发现表明,非线性分流抑制在塑造兴奋的幅度和间隔选择性方面起着关键作用。我们的研究结果为理解大脑如何解码时间间隔提供了重大进展,并可能解释先前报道的中脑神经元兴奋的矛盾时间选择性。

相似文献

2
Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1927-35. doi: 10.1073/pnas.1520971113. Epub 2016 Mar 14.
4
Mechanisms of long-interval selectivity in midbrain auditory neurons: roles of excitation, inhibition, and plasticity.
J Neurophysiol. 2008 Dec;100(6):3407-16. doi: 10.1152/jn.90921.2008. Epub 2008 Oct 22.
5
Counting on inhibition and rate-dependent excitation in the auditory system.
J Neurosci. 2007 Dec 5;27(49):13384-92. doi: 10.1523/JNEUROSCI.2816-07.2007.
6
Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
J Neurosci. 2014 Oct 22;34(43):14272-87. doi: 10.1523/JNEUROSCI.2299-14.2014.
7
Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):97-108. doi: 10.1007/s00359-010-0591-8. Epub 2010 Oct 8.
8
Stimulus selectivity is enhanced by voltage-dependent conductances in combination-sensitive neurons.
J Neurophysiol. 2006 Dec;96(6):3362-77. doi: 10.1152/jn.00839.2006. Epub 2006 Sep 27.
9
Midbrain auditory selectivity to natural sounds.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2508-13. doi: 10.1073/pnas.1517451113. Epub 2016 Feb 16.
10
A diversity of synaptic filters are created by temporal summation of excitation and inhibition.
J Neurosci. 2011 Oct 12;31(41):14721-34. doi: 10.1523/JNEUROSCI.1424-11.2011.

引用本文的文献

2
How auditory neurons count temporal intervals and decode information.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2404157121. doi: 10.1073/pnas.2404157121. Epub 2024 Aug 19.
3
Neural basis of acoustic species recognition in a cryptic species complex.
J Exp Biol. 2021 Dec 1;224(23). doi: 10.1242/jeb.243405. Epub 2021 Dec 9.

本文引用的文献

1
Neural correlates of sparse coding and dimensionality reduction.
PLoS Comput Biol. 2019 Jun 27;15(6):e1006908. doi: 10.1371/journal.pcbi.1006908. eCollection 2019 Jun.
2
The Neural Basis of Timing: Distributed Mechanisms for Diverse Functions.
Neuron. 2018 May 16;98(4):687-705. doi: 10.1016/j.neuron.2018.03.045.
3
Assessment of Methods for the Intracellular Blockade of GABAA Receptors.
PLoS One. 2016 Aug 8;11(8):e0160900. doi: 10.1371/journal.pone.0160900. eCollection 2016.
4
Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1927-35. doi: 10.1073/pnas.1520971113. Epub 2016 Mar 14.
5
An auditory feature detection circuit for sound pattern recognition.
Sci Adv. 2015 Sep 11;1(8):e1500325. doi: 10.1126/sciadv.1500325. eCollection 2015 Sep.
6
Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
J Neurosci. 2014 Oct 22;34(43):14272-87. doi: 10.1523/JNEUROSCI.2299-14.2014.
7
Time computations in anuran auditory systems.
Front Physiol. 2014 May 30;5:206. doi: 10.3389/fphys.2014.00206. eCollection 2014.
8
Combining pharmacology and whole-cell patch recording from CNS neurons, in vivo.
J Neurosci Methods. 2013 Feb 15;213(1):99-104. doi: 10.1016/j.jneumeth.2012.12.003. Epub 2012 Dec 21.
9
Inhibition dominates sensory responses in the awake cortex.
Nature. 2013 Jan 3;493(7430):97-100. doi: 10.1038/nature11665. Epub 2012 Nov 21.
10
How do short-term changes at synapses fine-tune information processing?
J Neurosci. 2012 Oct 10;32(41):14058-63. doi: 10.1523/JNEUROSCI.3348-12.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验